# SageMath code for working with number field 44.0.3714575655453538975253519356486345582985254755453847127268314361572265625.1 # Some of these functions may take a long time to execute (this depends on the field). # Define the number field: x = polygen(QQ); K. = NumberField(x^44 - x^43 + 2*x^42 - 3*x^41 + 5*x^40 - 8*x^39 + 13*x^38 - 21*x^37 + 34*x^36 - 55*x^35 + 89*x^34 - 144*x^33 + 233*x^32 - 377*x^31 + 610*x^30 - 987*x^29 + 1597*x^28 - 2584*x^27 + 4181*x^26 - 6765*x^25 + 10946*x^24 - 17711*x^23 + 28657*x^22 + 17711*x^21 + 10946*x^20 + 6765*x^19 + 4181*x^18 + 2584*x^17 + 1597*x^16 + 987*x^15 + 610*x^14 + 377*x^13 + 233*x^12 + 144*x^11 + 89*x^10 + 55*x^9 + 34*x^8 + 21*x^7 + 13*x^6 + 8*x^5 + 5*x^4 + 3*x^3 + 2*x^2 + x + 1) # Defining polynomial: K.defining_polynomial() # Degree over Q: K.degree() # Signature: K.signature() # Discriminant: K.disc() # Ramified primes: K.disc().support() # Autmorphisms: K.automorphisms() # Integral basis: K.integral_basis() # Class group: K.class_group().invariants() # Unit group: UK = K.unit_group() # Unit rank: UK.rank() # Generator for roots of unity: UK.torsion_generator() # Fundamental units: UK.fundamental_units() # Regulator: K.regulator() # Analytic class number formula: # self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K. = NumberField(x^44 - x^43 + 2*x^42 - 3*x^41 + 5*x^40 - 8*x^39 + 13*x^38 - 21*x^37 + 34*x^36 - 55*x^35 + 89*x^34 - 144*x^33 + 233*x^32 - 377*x^31 + 610*x^30 - 987*x^29 + 1597*x^28 - 2584*x^27 + 4181*x^26 - 6765*x^25 + 10946*x^24 - 17711*x^23 + 28657*x^22 + 17711*x^21 + 10946*x^20 + 6765*x^19 + 4181*x^18 + 2584*x^17 + 1597*x^16 + 987*x^15 + 610*x^14 + 377*x^13 + 233*x^12 + 144*x^11 + 89*x^10 + 55*x^9 + 34*x^8 + 21*x^7 + 13*x^6 + 8*x^5 + 5*x^4 + 3*x^3 + 2*x^2 + x + 1) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK)))) # Intermediate fields: K.subfields()[1:-1] # Galois group: K.galois_group(type='pari') # Frobenius cycle types: # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]