Normalized defining polynomial
\( x^{44} - x^{43} + 2 x^{42} - 3 x^{41} + 5 x^{40} - 8 x^{39} + 13 x^{38} - 21 x^{37} + 34 x^{36} - 55 x^{35} + 89 x^{34} - 144 x^{33} + 233 x^{32} - 377 x^{31} + 610 x^{30} - 987 x^{29} + 1597 x^{28} - 2584 x^{27} + 4181 x^{26} - 6765 x^{25} + 10946 x^{24} - 17711 x^{23} + 28657 x^{22} + 17711 x^{21} + 10946 x^{20} + 6765 x^{19} + 4181 x^{18} + 2584 x^{17} + 1597 x^{16} + 987 x^{15} + 610 x^{14} + 377 x^{13} + 233 x^{12} + 144 x^{11} + 89 x^{10} + 55 x^{9} + 34 x^{8} + 21 x^{7} + 13 x^{6} + 8 x^{5} + 5 x^{4} + 3 x^{3} + 2 x^{2} + x + 1 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $\frac{1}{28657} a^{23} - \frac{10946}{28657}$, $\frac{1}{28657} a^{24} - \frac{10946}{28657} a$, $\frac{1}{28657} a^{25} - \frac{10946}{28657} a^{2}$, $\frac{1}{28657} a^{26} - \frac{10946}{28657} a^{3}$, $\frac{1}{28657} a^{27} - \frac{10946}{28657} a^{4}$, $\frac{1}{28657} a^{28} - \frac{10946}{28657} a^{5}$, $\frac{1}{28657} a^{29} - \frac{10946}{28657} a^{6}$, $\frac{1}{28657} a^{30} - \frac{10946}{28657} a^{7}$, $\frac{1}{28657} a^{31} - \frac{10946}{28657} a^{8}$, $\frac{1}{28657} a^{32} - \frac{10946}{28657} a^{9}$, $\frac{1}{28657} a^{33} - \frac{10946}{28657} a^{10}$, $\frac{1}{28657} a^{34} - \frac{10946}{28657} a^{11}$, $\frac{1}{28657} a^{35} - \frac{10946}{28657} a^{12}$, $\frac{1}{28657} a^{36} - \frac{10946}{28657} a^{13}$, $\frac{1}{28657} a^{37} - \frac{10946}{28657} a^{14}$, $\frac{1}{28657} a^{38} - \frac{10946}{28657} a^{15}$, $\frac{1}{28657} a^{39} - \frac{10946}{28657} a^{16}$, $\frac{1}{28657} a^{40} - \frac{10946}{28657} a^{17}$, $\frac{1}{28657} a^{41} - \frac{10946}{28657} a^{18}$, $\frac{1}{28657} a^{42} - \frac{10946}{28657} a^{19}$, $\frac{1}{28657} a^{43} - \frac{10946}{28657} a^{20}$
Class group and class number
Not computed
Unit group
| Rank: | $21$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{610}{28657} a^{38} - \frac{39088169}{28657} a^{15} \) (order $46$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{22}$ (as 44T2):
| An abelian group of order 44 |
| The 44 conjugacy class representatives for $C_2\times C_{22}$ |
| Character table for $C_2\times C_{22}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $22^{2}$ | $22^{2}$ | R | $22^{2}$ | $22^{2}$ | $22^{2}$ | $22^{2}$ | $22^{2}$ | R | ${\href{/LocalNumberField/29.11.0.1}{11} }^{4}$ | ${\href{/LocalNumberField/31.11.0.1}{11} }^{4}$ | $22^{2}$ | ${\href{/LocalNumberField/41.11.0.1}{11} }^{4}$ | $22^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{22}$ | $22^{2}$ | ${\href{/LocalNumberField/59.11.0.1}{11} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 23 | Data not computed | ||||||