Normalized defining polynomial
\( x^{44} + 6 x^{42} + 36 x^{40} + 216 x^{38} + 1296 x^{36} + 7776 x^{34} + 46656 x^{32} + 279936 x^{30} + 1679616 x^{28} + 10077696 x^{26} + 60466176 x^{24} + 362797056 x^{22} + 2176782336 x^{20} + 13060694016 x^{18} + 78364164096 x^{16} + 470184984576 x^{14} + 2821109907456 x^{12} + 16926659444736 x^{10} + 101559956668416 x^{8} + 609359740010496 x^{6} + 3656158440062976 x^{4} + 21936950640377856 x^{2} + 131621703842267136 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{6} a^{2}$, $\frac{1}{6} a^{3}$, $\frac{1}{36} a^{4}$, $\frac{1}{36} a^{5}$, $\frac{1}{216} a^{6}$, $\frac{1}{216} a^{7}$, $\frac{1}{1296} a^{8}$, $\frac{1}{1296} a^{9}$, $\frac{1}{7776} a^{10}$, $\frac{1}{7776} a^{11}$, $\frac{1}{46656} a^{12}$, $\frac{1}{46656} a^{13}$, $\frac{1}{279936} a^{14}$, $\frac{1}{279936} a^{15}$, $\frac{1}{1679616} a^{16}$, $\frac{1}{1679616} a^{17}$, $\frac{1}{10077696} a^{18}$, $\frac{1}{10077696} a^{19}$, $\frac{1}{60466176} a^{20}$, $\frac{1}{60466176} a^{21}$, $\frac{1}{362797056} a^{22}$, $\frac{1}{362797056} a^{23}$, $\frac{1}{2176782336} a^{24}$, $\frac{1}{2176782336} a^{25}$, $\frac{1}{13060694016} a^{26}$, $\frac{1}{13060694016} a^{27}$, $\frac{1}{78364164096} a^{28}$, $\frac{1}{78364164096} a^{29}$, $\frac{1}{470184984576} a^{30}$, $\frac{1}{470184984576} a^{31}$, $\frac{1}{2821109907456} a^{32}$, $\frac{1}{2821109907456} a^{33}$, $\frac{1}{16926659444736} a^{34}$, $\frac{1}{16926659444736} a^{35}$, $\frac{1}{101559956668416} a^{36}$, $\frac{1}{101559956668416} a^{37}$, $\frac{1}{609359740010496} a^{38}$, $\frac{1}{609359740010496} a^{39}$, $\frac{1}{3656158440062976} a^{40}$, $\frac{1}{3656158440062976} a^{41}$, $\frac{1}{21936950640377856} a^{42}$, $\frac{1}{21936950640377856} a^{43}$
Class group and class number
Not computed
Unit group
| Rank: | $21$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1}{2821109907456} a^{32} \) (order $46$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{22}$ (as 44T2):
| An abelian group of order 44 |
| The 44 conjugacy class representatives for $C_2\times C_{22}$ |
| Character table for $C_2\times C_{22}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $22^{2}$ | $22^{2}$ | $22^{2}$ | $22^{2}$ | $22^{2}$ | $22^{2}$ | R | ${\href{/LocalNumberField/29.11.0.1}{11} }^{4}$ | $22^{2}$ | $22^{2}$ | $22^{2}$ | $22^{2}$ | ${\href{/LocalNumberField/47.1.0.1}{1} }^{44}$ | $22^{2}$ | $22^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 23 | Data not computed | ||||||