Normalized defining polynomial
\( x^{44} + 46 x^{42} + 1196 x^{40} + 21344 x^{38} + 288880 x^{36} + 3092672 x^{34} + 26959680 x^{32} + 194136192 x^{30} + 1166724864 x^{28} + 5871596032 x^{26} + 24779907072 x^{24} + 87372361728 x^{22} + 256133369856 x^{20} + 617611444224 x^{18} + 1211353595904 x^{16} + 1892954505216 x^{14} + 2313501278208 x^{12} + 2122754949120 x^{10} + 1427789316096 x^{8} + 634573029376 x^{6} + 189151576064 x^{4} + 24406654976 x^{2} + 2218786816 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{8} a^{7}$, $\frac{1}{16} a^{8}$, $\frac{1}{16} a^{9}$, $\frac{1}{32} a^{10}$, $\frac{1}{32} a^{11}$, $\frac{1}{64} a^{12}$, $\frac{1}{64} a^{13}$, $\frac{1}{128} a^{14}$, $\frac{1}{128} a^{15}$, $\frac{1}{256} a^{16}$, $\frac{1}{256} a^{17}$, $\frac{1}{512} a^{18}$, $\frac{1}{512} a^{19}$, $\frac{1}{1024} a^{20}$, $\frac{1}{1024} a^{21}$, $\frac{1}{47104} a^{22}$, $\frac{1}{47104} a^{23}$, $\frac{1}{94208} a^{24}$, $\frac{1}{94208} a^{25}$, $\frac{1}{188416} a^{26}$, $\frac{1}{188416} a^{27}$, $\frac{1}{376832} a^{28}$, $\frac{1}{376832} a^{29}$, $\frac{1}{753664} a^{30}$, $\frac{1}{753664} a^{31}$, $\frac{1}{1507328} a^{32}$, $\frac{1}{1507328} a^{33}$, $\frac{1}{3014656} a^{34}$, $\frac{1}{3014656} a^{35}$, $\frac{1}{6029312} a^{36}$, $\frac{1}{6029312} a^{37}$, $\frac{1}{12058624} a^{38}$, $\frac{1}{12058624} a^{39}$, $\frac{1}{25748996882432} a^{40} + \frac{305889}{12874498441216} a^{38} - \frac{50829}{1609312305152} a^{36} - \frac{119}{25145504768} a^{34} + \frac{26477}{100582019072} a^{32} - \frac{263735}{804656152576} a^{30} - \frac{8529}{8746262528} a^{28} + \frac{79693}{201164038144} a^{26} + \frac{96101}{25145504768} a^{24} + \frac{105069}{25145504768} a^{22} + \frac{3065}{8541272} a^{20} - \frac{491477}{546641408} a^{18} + \frac{460291}{273320704} a^{16} + \frac{409417}{136660352} a^{14} - \frac{360327}{68330176} a^{12} + \frac{186323}{17082544} a^{10} - \frac{195531}{17082544} a^{8} + \frac{255097}{8541272} a^{6} + \frac{12929}{4270636} a^{4} + \frac{223085}{1067659} a^{2} + \frac{55697}{1067659}$, $\frac{1}{25748996882432} a^{41} + \frac{305889}{12874498441216} a^{39} - \frac{50829}{1609312305152} a^{37} - \frac{119}{25145504768} a^{35} + \frac{26477}{100582019072} a^{33} - \frac{263735}{804656152576} a^{31} - \frac{8529}{8746262528} a^{29} + \frac{79693}{201164038144} a^{27} + \frac{96101}{25145504768} a^{25} + \frac{105069}{25145504768} a^{23} + \frac{3065}{8541272} a^{21} - \frac{491477}{546641408} a^{19} + \frac{460291}{273320704} a^{17} + \frac{409417}{136660352} a^{15} - \frac{360327}{68330176} a^{13} + \frac{186323}{17082544} a^{11} - \frac{195531}{17082544} a^{9} + \frac{255097}{8541272} a^{7} + \frac{12929}{4270636} a^{5} + \frac{223085}{1067659} a^{3} + \frac{55697}{1067659} a$, $\frac{1}{1335818852927485818837891053908284074409066496} a^{42} + \frac{5755636131279205685327418474843}{667909426463742909418945526954142037204533248} a^{40} - \frac{1383404489426830319140843666641594613}{166977356615935727354736381738535509301133312} a^{38} + \frac{2105031413991241892608583935141091629}{41744339153983931838684095434633877325283328} a^{36} + \frac{5363834181750727225775342499545938237}{83488678307967863677368190869267754650566656} a^{34} - \frac{5011363664417770982567818120174250979}{41744339153983931838684095434633877325283328} a^{32} + \frac{3231387198050959561927333953744988695}{10436084788495982959671023858658469331320832} a^{30} + \frac{1361369016049795655998233811816501799}{10436084788495982959671023858658469331320832} a^{28} + \frac{6874823917339413142335501712787549293}{2609021197123995739917755964664617332830208} a^{26} + \frac{9151572527542995230221480787613417001}{2609021197123995739917755964664617332830208} a^{24} + \frac{5598577581179907887742314335636129301}{652255299280998934979438991166154333207552} a^{22} - \frac{13338061847948670589198734037381162771}{28358926055695605868671260485484971009024} a^{20} + \frac{3325354838963388092291754978582097657}{7089731513923901467167815121371242752256} a^{18} - \frac{3410212107159495813728007700658120273}{3544865756961950733583907560685621376128} a^{16} + \frac{2636217873877079152530524515214121975}{886216439240487683395976890171405344032} a^{14} - \frac{73118483709039950333729782240665369}{110777054905060960424497111271425668004} a^{12} - \frac{91687202865078033400874710337434905}{886216439240487683395976890171405344032} a^{10} - \frac{316191633944609787184707238694957865}{110777054905060960424497111271425668004} a^{8} + \frac{50859265163095170038478202859118597}{27694263726265240106124277817856417001} a^{6} - \frac{3615734122086171837070622535576165639}{110777054905060960424497111271425668004} a^{4} - \frac{1644145403094707030709335232608519251}{55388527452530480212248555635712834002} a^{2} - \frac{2178959152626519883114055851297237383}{27694263726265240106124277817856417001}$, $\frac{1}{1335818852927485818837891053908284074409066496} a^{43} + \frac{5755636131279205685327418474843}{667909426463742909418945526954142037204533248} a^{41} - \frac{1383404489426830319140843666641594613}{166977356615935727354736381738535509301133312} a^{39} + \frac{2105031413991241892608583935141091629}{41744339153983931838684095434633877325283328} a^{37} + \frac{5363834181750727225775342499545938237}{83488678307967863677368190869267754650566656} a^{35} - \frac{5011363664417770982567818120174250979}{41744339153983931838684095434633877325283328} a^{33} + \frac{3231387198050959561927333953744988695}{10436084788495982959671023858658469331320832} a^{31} + \frac{1361369016049795655998233811816501799}{10436084788495982959671023858658469331320832} a^{29} + \frac{6874823917339413142335501712787549293}{2609021197123995739917755964664617332830208} a^{27} + \frac{9151572527542995230221480787613417001}{2609021197123995739917755964664617332830208} a^{25} + \frac{5598577581179907887742314335636129301}{652255299280998934979438991166154333207552} a^{23} - \frac{13338061847948670589198734037381162771}{28358926055695605868671260485484971009024} a^{21} + \frac{3325354838963388092291754978582097657}{7089731513923901467167815121371242752256} a^{19} - \frac{3410212107159495813728007700658120273}{3544865756961950733583907560685621376128} a^{17} + \frac{2636217873877079152530524515214121975}{886216439240487683395976890171405344032} a^{15} - \frac{73118483709039950333729782240665369}{110777054905060960424497111271425668004} a^{13} - \frac{91687202865078033400874710337434905}{886216439240487683395976890171405344032} a^{11} - \frac{316191633944609787184707238694957865}{110777054905060960424497111271425668004} a^{9} + \frac{50859265163095170038478202859118597}{27694263726265240106124277817856417001} a^{7} - \frac{3615734122086171837070622535576165639}{110777054905060960424497111271425668004} a^{5} - \frac{1644145403094707030709335232608519251}{55388527452530480212248555635712834002} a^{3} - \frac{2178959152626519883114055851297237383}{27694263726265240106124277817856417001} a$
Class group and class number
Not computed
Unit group
| Rank: | $21$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{61443417293303013805869887824396829}{667909426463742909418945526954142037204533248} a^{42} + \frac{2811939192352668411885229675135639801}{667909426463742909418945526954142037204533248} a^{40} + \frac{36414697296856284759939776538503707259}{333954713231871454709472763477071018602266624} a^{38} + \frac{10113469987828312908049183311260795713}{5218042394247991479835511929329234665660416} a^{36} + \frac{94840309042035377828763732789936159253}{3629942535129037551189921342142076289155072} a^{34} + \frac{1453232819281474039982254428683175362307}{5218042394247991479835511929329234665660416} a^{32} + \frac{25218734992551942538612710558630918438117}{10436084788495982959671023858658469331320832} a^{30} + \frac{45164116932379557822013504608028003073805}{2609021197123995739917755964664617332830208} a^{28} + \frac{539700580015441526193324798291357128560367}{5218042394247991479835511929329234665660416} a^{26} + \frac{674462731823193908866750986026349477474381}{1304510598561997869958877982332308666415104} a^{24} + \frac{2824335798154840894937367872769089973737085}{1304510598561997869958877982332308666415104} a^{22} + \frac{214483121678187214802353819142117544539397}{28358926055695605868671260485484971009024} a^{20} + \frac{310899250664862701002677708578524574741901}{14179463027847802934335630242742485504512} a^{18} + \frac{369687660510746256879893799985492355417343}{7089731513923901467167815121371242752256} a^{16} + \frac{178196659705104396119184176848423616180187}{1772432878480975366791953780342810688064} a^{14} + \frac{272294467684043844839338109120170952735511}{1772432878480975366791953780342810688064} a^{12} + \frac{161725619685950643130152670201485133448169}{886216439240487683395976890171405344032} a^{10} + \frac{17807782810185224264803672438145725455565}{110777054905060960424497111271425668004} a^{8} + \frac{2850800390826819537901578346849026721807}{27694263726265240106124277817856417001} a^{6} + \frac{4627967503254677839370131558107172115801}{110777054905060960424497111271425668004} a^{4} + \frac{692427001424194557692742582610301257789}{55388527452530480212248555635712834002} a^{2} + \frac{44164528473070801026640465487964764435}{27694263726265240106124277817856417001} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{22}$ (as 44T2):
| An abelian group of order 44 |
| The 44 conjugacy class representatives for $C_2\times C_{22}$ |
| Character table for $C_2\times C_{22}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $22^{2}$ | ${\href{/LocalNumberField/7.11.0.1}{11} }^{4}$ | $22^{2}$ | $22^{2}$ | $22^{2}$ | $22^{2}$ | R | $22^{2}$ | $22^{2}$ | ${\href{/LocalNumberField/37.11.0.1}{11} }^{4}$ | $22^{2}$ | $22^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{22}$ | $22^{2}$ | $22^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 23 | Data not computed | ||||||