Properties

Label 44.0.319...000.1
Degree $44$
Signature $[0, 22]$
Discriminant $3.191\times 10^{93}$
Root discriminant \(133.38\)
Ramified primes $2,5,23$
Class number not computed
Class group not computed
Galois group $C_{44}$ (as 44T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^44 + 115*x^42 + 6095*x^40 + 197800*x^38 + 4405075*x^36 + 71512750*x^34 + 877527625*x^32 + 8329148125*x^30 + 62064479375*x^28 + 366389353125*x^26 + 1721656375000*x^24 + 6445987906250*x^22 + 19182837703125*x^20 + 45106755468750*x^18 + 82991007812500*x^16 + 117775857421875*x^14 + 126351650000000*x^12 + 99649341796875*x^10 + 55553265625000*x^8 + 20684726562500*x^6 + 4716572265625*x^4 + 568261718750*x^2 + 25830078125)
 
gp: K = bnfinit(y^44 + 115*y^42 + 6095*y^40 + 197800*y^38 + 4405075*y^36 + 71512750*y^34 + 877527625*y^32 + 8329148125*y^30 + 62064479375*y^28 + 366389353125*y^26 + 1721656375000*y^24 + 6445987906250*y^22 + 19182837703125*y^20 + 45106755468750*y^18 + 82991007812500*y^16 + 117775857421875*y^14 + 126351650000000*y^12 + 99649341796875*y^10 + 55553265625000*y^8 + 20684726562500*y^6 + 4716572265625*y^4 + 568261718750*y^2 + 25830078125, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^44 + 115*x^42 + 6095*x^40 + 197800*x^38 + 4405075*x^36 + 71512750*x^34 + 877527625*x^32 + 8329148125*x^30 + 62064479375*x^28 + 366389353125*x^26 + 1721656375000*x^24 + 6445987906250*x^22 + 19182837703125*x^20 + 45106755468750*x^18 + 82991007812500*x^16 + 117775857421875*x^14 + 126351650000000*x^12 + 99649341796875*x^10 + 55553265625000*x^8 + 20684726562500*x^6 + 4716572265625*x^4 + 568261718750*x^2 + 25830078125);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^44 + 115*x^42 + 6095*x^40 + 197800*x^38 + 4405075*x^36 + 71512750*x^34 + 877527625*x^32 + 8329148125*x^30 + 62064479375*x^28 + 366389353125*x^26 + 1721656375000*x^24 + 6445987906250*x^22 + 19182837703125*x^20 + 45106755468750*x^18 + 82991007812500*x^16 + 117775857421875*x^14 + 126351650000000*x^12 + 99649341796875*x^10 + 55553265625000*x^8 + 20684726562500*x^6 + 4716572265625*x^4 + 568261718750*x^2 + 25830078125)
 

\( x^{44} + 115 x^{42} + 6095 x^{40} + 197800 x^{38} + 4405075 x^{36} + 71512750 x^{34} + \cdots + 25830078125 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $44$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 22]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(319\!\cdots\!000\) \(\medspace = 2^{44}\cdot 5^{33}\cdot 23^{42}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(133.38\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $2\cdot 5^{3/4}23^{21/22}\approx 133.37935567613386$
Ramified primes:   \(2\), \(5\), \(23\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{5}) \)
$\card{ \Gal(K/\Q) }$:  $44$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(460=2^{2}\cdot 5\cdot 23\)
Dirichlet character group:    $\lbrace$$\chi_{460}(1,·)$, $\chi_{460}(387,·)$, $\chi_{460}(261,·)$, $\chi_{460}(7,·)$, $\chi_{460}(9,·)$, $\chi_{460}(267,·)$, $\chi_{460}(269,·)$, $\chi_{460}(143,·)$, $\chi_{460}(107,·)$, $\chi_{460}(409,·)$, $\chi_{460}(283,·)$, $\chi_{460}(29,·)$, $\chi_{460}(287,·)$, $\chi_{460}(289,·)$, $\chi_{460}(41,·)$, $\chi_{460}(43,·)$, $\chi_{460}(301,·)$, $\chi_{460}(49,·)$, $\chi_{460}(183,·)$, $\chi_{460}(441,·)$, $\chi_{460}(63,·)$, $\chi_{460}(449,·)$, $\chi_{460}(67,·)$, $\chi_{460}(327,·)$, $\chi_{460}(203,·)$, $\chi_{460}(141,·)$, $\chi_{460}(209,·)$, $\chi_{460}(83,·)$, $\chi_{460}(343,·)$, $\chi_{460}(349,·)$, $\chi_{460}(263,·)$, $\chi_{460}(227,·)$, $\chi_{460}(101,·)$, $\chi_{460}(81,·)$, $\chi_{460}(361,·)$, $\chi_{460}(103,·)$, $\chi_{460}(367,·)$, $\chi_{460}(369,·)$, $\chi_{460}(169,·)$, $\chi_{460}(121,·)$, $\chi_{460}(447,·)$, $\chi_{460}(247,·)$, $\chi_{460}(381,·)$, $\chi_{460}(383,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{2097152}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{5}a^{4}$, $\frac{1}{5}a^{5}$, $\frac{1}{5}a^{6}$, $\frac{1}{5}a^{7}$, $\frac{1}{25}a^{8}$, $\frac{1}{25}a^{9}$, $\frac{1}{25}a^{10}$, $\frac{1}{25}a^{11}$, $\frac{1}{125}a^{12}$, $\frac{1}{125}a^{13}$, $\frac{1}{125}a^{14}$, $\frac{1}{125}a^{15}$, $\frac{1}{625}a^{16}$, $\frac{1}{625}a^{17}$, $\frac{1}{625}a^{18}$, $\frac{1}{625}a^{19}$, $\frac{1}{3125}a^{20}$, $\frac{1}{3125}a^{21}$, $\frac{1}{71875}a^{22}$, $\frac{1}{71875}a^{23}$, $\frac{1}{359375}a^{24}$, $\frac{1}{359375}a^{25}$, $\frac{1}{359375}a^{26}$, $\frac{1}{359375}a^{27}$, $\frac{1}{1796875}a^{28}$, $\frac{1}{1796875}a^{29}$, $\frac{1}{1796875}a^{30}$, $\frac{1}{1796875}a^{31}$, $\frac{1}{8984375}a^{32}$, $\frac{1}{8984375}a^{33}$, $\frac{1}{8984375}a^{34}$, $\frac{1}{8984375}a^{35}$, $\frac{1}{44921875}a^{36}$, $\frac{1}{44921875}a^{37}$, $\frac{1}{44921875}a^{38}$, $\frac{1}{44921875}a^{39}$, $\frac{1}{31220703125}a^{40}+\frac{38}{6244140625}a^{38}+\frac{57}{6244140625}a^{36}+\frac{37}{1248828125}a^{34}+\frac{56}{1248828125}a^{32}-\frac{8}{249765625}a^{30}-\frac{66}{249765625}a^{28}-\frac{18}{49953125}a^{26}-\frac{64}{49953125}a^{24}-\frac{12}{9990625}a^{22}-\frac{13}{86875}a^{20}-\frac{61}{86875}a^{18}-\frac{4}{86875}a^{16}-\frac{61}{17375}a^{14}+\frac{11}{17375}a^{12}-\frac{7}{3475}a^{10}-\frac{14}{3475}a^{8}+\frac{54}{695}a^{6}+\frac{12}{695}a^{4}+\frac{29}{139}a^{2}+\frac{50}{139}$, $\frac{1}{31220703125}a^{41}+\frac{38}{6244140625}a^{39}+\frac{57}{6244140625}a^{37}+\frac{37}{1248828125}a^{35}+\frac{56}{1248828125}a^{33}-\frac{8}{249765625}a^{31}-\frac{66}{249765625}a^{29}-\frac{18}{49953125}a^{27}-\frac{64}{49953125}a^{25}-\frac{12}{9990625}a^{23}-\frac{13}{86875}a^{21}-\frac{61}{86875}a^{19}-\frac{4}{86875}a^{17}-\frac{61}{17375}a^{15}+\frac{11}{17375}a^{13}-\frac{7}{3475}a^{11}-\frac{14}{3475}a^{9}+\frac{54}{695}a^{7}+\frac{12}{695}a^{5}+\frac{29}{139}a^{3}+\frac{50}{139}a$, $\frac{1}{13\!\cdots\!25}a^{42}+\frac{16407932}{13\!\cdots\!25}a^{40}+\frac{18964067483}{26\!\cdots\!25}a^{38}-\frac{4118885674}{26\!\cdots\!25}a^{36}-\frac{926153448}{21\!\cdots\!25}a^{34}+\frac{601820938}{53\!\cdots\!25}a^{32}-\frac{11481904146}{10\!\cdots\!25}a^{30}-\frac{165538382}{46\!\cdots\!75}a^{28}+\frac{1237569152}{42\!\cdots\!25}a^{26}-\frac{17097125271}{21\!\cdots\!25}a^{24}-\frac{13064830797}{42\!\cdots\!25}a^{22}-\frac{17927745913}{185673107684375}a^{20}-\frac{12866578354}{37134621536875}a^{18}+\frac{1605500536}{37134621536875}a^{16}+\frac{23650877134}{7426924307375}a^{14}-\frac{4879993064}{1485384861475}a^{12}+\frac{8842120783}{1485384861475}a^{10}+\frac{4770921064}{297076972295}a^{8}+\frac{15693037004}{297076972295}a^{6}+\frac{22412302837}{297076972295}a^{4}+\frac{7428755939}{59415394459}a^{2}-\frac{17364519196}{59415394459}$, $\frac{1}{13\!\cdots\!25}a^{43}+\frac{16407932}{13\!\cdots\!25}a^{41}+\frac{18964067483}{26\!\cdots\!25}a^{39}-\frac{4118885674}{26\!\cdots\!25}a^{37}-\frac{926153448}{21\!\cdots\!25}a^{35}+\frac{601820938}{53\!\cdots\!25}a^{33}-\frac{11481904146}{10\!\cdots\!25}a^{31}-\frac{165538382}{46\!\cdots\!75}a^{29}+\frac{1237569152}{42\!\cdots\!25}a^{27}-\frac{17097125271}{21\!\cdots\!25}a^{25}-\frac{13064830797}{42\!\cdots\!25}a^{23}-\frac{17927745913}{185673107684375}a^{21}-\frac{12866578354}{37134621536875}a^{19}+\frac{1605500536}{37134621536875}a^{17}+\frac{23650877134}{7426924307375}a^{15}-\frac{4879993064}{1485384861475}a^{13}+\frac{8842120783}{1485384861475}a^{11}+\frac{4770921064}{297076972295}a^{9}+\frac{15693037004}{297076972295}a^{7}+\frac{22412302837}{297076972295}a^{5}+\frac{7428755939}{59415394459}a^{3}-\frac{17364519196}{59415394459}a$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

not computed

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $21$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:  not computed
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  not computed
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr $ not computed \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^44 + 115*x^42 + 6095*x^40 + 197800*x^38 + 4405075*x^36 + 71512750*x^34 + 877527625*x^32 + 8329148125*x^30 + 62064479375*x^28 + 366389353125*x^26 + 1721656375000*x^24 + 6445987906250*x^22 + 19182837703125*x^20 + 45106755468750*x^18 + 82991007812500*x^16 + 117775857421875*x^14 + 126351650000000*x^12 + 99649341796875*x^10 + 55553265625000*x^8 + 20684726562500*x^6 + 4716572265625*x^4 + 568261718750*x^2 + 25830078125)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^44 + 115*x^42 + 6095*x^40 + 197800*x^38 + 4405075*x^36 + 71512750*x^34 + 877527625*x^32 + 8329148125*x^30 + 62064479375*x^28 + 366389353125*x^26 + 1721656375000*x^24 + 6445987906250*x^22 + 19182837703125*x^20 + 45106755468750*x^18 + 82991007812500*x^16 + 117775857421875*x^14 + 126351650000000*x^12 + 99649341796875*x^10 + 55553265625000*x^8 + 20684726562500*x^6 + 4716572265625*x^4 + 568261718750*x^2 + 25830078125, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^44 + 115*x^42 + 6095*x^40 + 197800*x^38 + 4405075*x^36 + 71512750*x^34 + 877527625*x^32 + 8329148125*x^30 + 62064479375*x^28 + 366389353125*x^26 + 1721656375000*x^24 + 6445987906250*x^22 + 19182837703125*x^20 + 45106755468750*x^18 + 82991007812500*x^16 + 117775857421875*x^14 + 126351650000000*x^12 + 99649341796875*x^10 + 55553265625000*x^8 + 20684726562500*x^6 + 4716572265625*x^4 + 568261718750*x^2 + 25830078125);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^44 + 115*x^42 + 6095*x^40 + 197800*x^38 + 4405075*x^36 + 71512750*x^34 + 877527625*x^32 + 8329148125*x^30 + 62064479375*x^28 + 366389353125*x^26 + 1721656375000*x^24 + 6445987906250*x^22 + 19182837703125*x^20 + 45106755468750*x^18 + 82991007812500*x^16 + 117775857421875*x^14 + 126351650000000*x^12 + 99649341796875*x^10 + 55553265625000*x^8 + 20684726562500*x^6 + 4716572265625*x^4 + 568261718750*x^2 + 25830078125);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{44}$ (as 44T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 44
The 44 conjugacy class representatives for $C_{44}$
Character table for $C_{44}$ is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.0.1058000.1, \(\Q(\zeta_{23})^+\), 22.22.83796671451884098775580820361328125.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type R $44$ R $44$ ${\href{/padicField/11.11.0.1}{11} }^{4}$ $44$ $44$ $22^{2}$ R $22^{2}$ $22^{2}$ $44$ ${\href{/padicField/41.11.0.1}{11} }^{4}$ $44$ ${\href{/padicField/47.4.0.1}{4} }^{11}$ $44$ ${\href{/padicField/59.11.0.1}{11} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(2\) Copy content Toggle raw display Deg $44$$2$$22$$44$
\(5\) Copy content Toggle raw display Deg $44$$4$$11$$33$
\(23\) Copy content Toggle raw display Deg $44$$22$$2$$42$