\\ Pari/GP code for working with number field 44.0.27408730583433337351085467861786155262978057758761987414355526669041664.1 \\ Some of these functions may take a long time to execute (this depends on the field). \\ Define the number field: K = bnfinit(y^44 - y^42 + y^40 - y^38 + y^36 - y^34 + y^32 - y^30 + y^28 - y^26 + y^24 - y^22 + y^20 - y^18 + y^16 - y^14 + y^12 - y^10 + y^8 - y^6 + y^4 - y^2 + 1, 1) \\ Defining polynomial: K.pol \\ Degree over Q: poldegree(K.pol) \\ Signature: K.sign \\ Discriminant: K.disc \\ Ramified primes: factor(abs(K.disc))[,1]~ \\ Integral basis: K.zk \\ Class group: K.clgp \\ Unit rank: K.fu \\ Generator for roots of unity: K.tu[2] \\ Fundamental units: K.fu \\ Regulator: K.reg \\ Analytic class number formula: # self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^44 - x^42 + x^40 - x^38 + x^36 - x^34 + x^32 - x^30 + x^28 - x^26 + x^24 - x^22 + x^20 - x^18 + x^16 - x^14 + x^12 - x^10 + x^8 - x^6 + x^4 - x^2 + 1, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))] \\ Intermediate fields: L = nfsubfields(K); L[2..length(b)] \\ Galois group: polgalois(K.pol) \\ Frobenius cycle types: \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])