Normalized defining polynomial
\( x^{44} + 63 x^{42} + 1771 x^{40} + 29412 x^{38} + 322363 x^{36} + 2470134 x^{34} + 13694893 x^{32} + 56167749 x^{30} + 172989335 x^{28} + 404160705 x^{26} + 720751936 x^{24} + 983588334 x^{22} + 1025844301 x^{20} + 813203334 x^{18} + 484862836 x^{16} + 213849639 x^{14} + 68058536 x^{12} + 15071199 x^{10} + 2201056 x^{8} + 195624 x^{6} + 9361 x^{4} + 198 x^{2} + 1 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$, $a^{37}$, $a^{38}$, $a^{39}$, $\frac{1}{139} a^{40} + \frac{45}{139} a^{38} + \frac{28}{139} a^{36} - \frac{11}{139} a^{34} - \frac{50}{139} a^{32} + \frac{8}{139} a^{30} - \frac{2}{139} a^{28} + \frac{12}{139} a^{26} + \frac{64}{139} a^{24} + \frac{19}{139} a^{22} - \frac{44}{139} a^{20} + \frac{32}{139} a^{18} + \frac{3}{139} a^{16} - \frac{67}{139} a^{14} + \frac{53}{139} a^{12} + \frac{65}{139} a^{10} - \frac{57}{139} a^{8} - \frac{3}{139} a^{6} - \frac{11}{139} a^{4} - \frac{10}{139} a^{2} + \frac{66}{139}$, $\frac{1}{139} a^{41} + \frac{45}{139} a^{39} + \frac{28}{139} a^{37} - \frac{11}{139} a^{35} - \frac{50}{139} a^{33} + \frac{8}{139} a^{31} - \frac{2}{139} a^{29} + \frac{12}{139} a^{27} + \frac{64}{139} a^{25} + \frac{19}{139} a^{23} - \frac{44}{139} a^{21} + \frac{32}{139} a^{19} + \frac{3}{139} a^{17} - \frac{67}{139} a^{15} + \frac{53}{139} a^{13} + \frac{65}{139} a^{11} - \frac{57}{139} a^{9} - \frac{3}{139} a^{7} - \frac{11}{139} a^{5} - \frac{10}{139} a^{3} + \frac{66}{139} a$, $\frac{1}{903797337968266405995539176965434889261299} a^{42} + \frac{130177666064561621313887748338781075730}{903797337968266405995539176965434889261299} a^{40} + \frac{99058032285335090257918538339087825780952}{903797337968266405995539176965434889261299} a^{38} + \frac{338186811088381392638801068780181294361127}{903797337968266405995539176965434889261299} a^{36} - \frac{7385849353393373698483025322163291875960}{903797337968266405995539176965434889261299} a^{34} + \frac{32513950234371015415844648090714104490715}{903797337968266405995539176965434889261299} a^{32} + \frac{434324421684235595982463372570948519167017}{903797337968266405995539176965434889261299} a^{30} + \frac{64488271171369193552193798792419153903851}{903797337968266405995539176965434889261299} a^{28} - \frac{136118574919356883203766843615480783007646}{903797337968266405995539176965434889261299} a^{26} + \frac{25684985262706259522704035798228708790782}{903797337968266405995539176965434889261299} a^{24} - \frac{172738058963559142833814800806180982354053}{903797337968266405995539176965434889261299} a^{22} + \frac{34540688792776578338007341838722238008896}{903797337968266405995539176965434889261299} a^{20} + \frac{133504439791512061099760523876135413873000}{903797337968266405995539176965434889261299} a^{18} + \frac{330682891645019761201373867414243647711589}{903797337968266405995539176965434889261299} a^{16} + \frac{287186121623732381928443141302586426709898}{903797337968266405995539176965434889261299} a^{14} + \frac{232948205096083511224887496985959973242831}{903797337968266405995539176965434889261299} a^{12} + \frac{149821569836974546160834695685307324964894}{903797337968266405995539176965434889261299} a^{10} - \frac{232291130789377550800283608790411538854601}{903797337968266405995539176965434889261299} a^{8} + \frac{170086229709210106584174425345470656263400}{903797337968266405995539176965434889261299} a^{6} - \frac{185601737904770903928142946690797135264135}{903797337968266405995539176965434889261299} a^{4} + \frac{72667242694983196693549637721719047775499}{903797337968266405995539176965434889261299} a^{2} - \frac{47806379124997534888933378856771150573911}{903797337968266405995539176965434889261299}$, $\frac{1}{903797337968266405995539176965434889261299} a^{43} + \frac{130177666064561621313887748338781075730}{903797337968266405995539176965434889261299} a^{41} + \frac{99058032285335090257918538339087825780952}{903797337968266405995539176965434889261299} a^{39} + \frac{338186811088381392638801068780181294361127}{903797337968266405995539176965434889261299} a^{37} - \frac{7385849353393373698483025322163291875960}{903797337968266405995539176965434889261299} a^{35} + \frac{32513950234371015415844648090714104490715}{903797337968266405995539176965434889261299} a^{33} + \frac{434324421684235595982463372570948519167017}{903797337968266405995539176965434889261299} a^{31} + \frac{64488271171369193552193798792419153903851}{903797337968266405995539176965434889261299} a^{29} - \frac{136118574919356883203766843615480783007646}{903797337968266405995539176965434889261299} a^{27} + \frac{25684985262706259522704035798228708790782}{903797337968266405995539176965434889261299} a^{25} - \frac{172738058963559142833814800806180982354053}{903797337968266405995539176965434889261299} a^{23} + \frac{34540688792776578338007341838722238008896}{903797337968266405995539176965434889261299} a^{21} + \frac{133504439791512061099760523876135413873000}{903797337968266405995539176965434889261299} a^{19} + \frac{330682891645019761201373867414243647711589}{903797337968266405995539176965434889261299} a^{17} + \frac{287186121623732381928443141302586426709898}{903797337968266405995539176965434889261299} a^{15} + \frac{232948205096083511224887496985959973242831}{903797337968266405995539176965434889261299} a^{13} + \frac{149821569836974546160834695685307324964894}{903797337968266405995539176965434889261299} a^{11} - \frac{232291130789377550800283608790411538854601}{903797337968266405995539176965434889261299} a^{9} + \frac{170086229709210106584174425345470656263400}{903797337968266405995539176965434889261299} a^{7} - \frac{185601737904770903928142946690797135264135}{903797337968266405995539176965434889261299} a^{5} + \frac{72667242694983196693549637721719047775499}{903797337968266405995539176965434889261299} a^{3} - \frac{47806379124997534888933378856771150573911}{903797337968266405995539176965434889261299} a$
Class group and class number
Not computed
Unit group
| Rank: | $21$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{209157351019064485193720}{2226090219617027257916699} a^{43} + \frac{12995488274359730586935290}{2226090219617027257916699} a^{41} + \frac{359143284978099066457720105}{2226090219617027257916699} a^{39} + \frac{5839972721540257020635425985}{2226090219617027257916699} a^{37} + \frac{62348418235602803927625805125}{2226090219617027257916699} a^{35} + \frac{462315626899471636311969926105}{2226090219617027257916699} a^{33} + \frac{2459676882912455947235289455830}{2226090219617027257916699} a^{31} + \frac{9577529956515647388992261040325}{2226090219617027257916699} a^{29} + \frac{27616587656070514976128092203875}{2226090219617027257916699} a^{27} + \frac{59278266630197454362918907321225}{2226090219617027257916699} a^{25} + \frac{94532141338580093200503304010726}{2226090219617027257916699} a^{23} + \frac{110623091364929624646755757921827}{2226090219617027257916699} a^{21} + \frac{92010792085643524841366328007535}{2226090219617027257916699} a^{19} + \frac{50081888735077478032214559584484}{2226090219617027257916699} a^{17} + \frac{12880295636412651288925218674382}{2226090219617027257916699} a^{15} - \frac{3673808100033226154684241754493}{2226090219617027257916699} a^{13} - \frac{4851804509885062421451654632776}{2226090219617027257916699} a^{11} - \frac{2053398889912630968727299729775}{2226090219617027257916699} a^{9} - \frac{460153217780433676988443046173}{2226090219617027257916699} a^{7} - \frac{54333828788409951784086810349}{2226090219617027257916699} a^{5} - \frac{2882529697730366774413556719}{2226090219617027257916699} a^{3} - \frac{44310276008005938920339643}{2226090219617027257916699} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{22}$ (as 44T2):
| An abelian group of order 44 |
| The 44 conjugacy class representatives for $C_2\times C_{22}$ |
| Character table for $C_2\times C_{22}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $22^{2}$ | R | $22^{2}$ | $22^{2}$ | $22^{2}$ | $22^{2}$ | $22^{2}$ | R | ${\href{/LocalNumberField/29.11.0.1}{11} }^{4}$ | $22^{2}$ | $22^{2}$ | ${\href{/LocalNumberField/41.11.0.1}{11} }^{4}$ | $22^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{22}$ | $22^{2}$ | $22^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 23 | Data not computed | ||||||