Normalized defining polynomial
\( x^{44} + 89 x^{42} + 3560 x^{40} + 84817 x^{38} + 1345057 x^{36} + 15033079 x^{34} + 122342159 x^{32} + 738903721 x^{30} + 3346368138 x^{28} + 11410780513 x^{26} + 29270077030 x^{24} + 56180587217 x^{22} + 79915633830 x^{20} + 83072278176 x^{18} + 61906589562 x^{16} + 32223471809 x^{14} + 11291273538 x^{12} + 2520532510 x^{10} + 329351798 x^{8} + 22464757 x^{6} + 791922 x^{4} + 13617 x^{2} + 89 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $\frac{1}{179} a^{36} + \frac{25}{179} a^{34} - \frac{29}{179} a^{32} + \frac{33}{179} a^{30} - \frac{20}{179} a^{28} - \frac{1}{179} a^{26} + \frac{4}{179} a^{24} + \frac{58}{179} a^{22} + \frac{62}{179} a^{20} - \frac{51}{179} a^{18} - \frac{3}{179} a^{16} + \frac{42}{179} a^{14} - \frac{2}{179} a^{12} - \frac{11}{179} a^{10} - \frac{12}{179} a^{8} - \frac{24}{179} a^{6} + \frac{18}{179} a^{4} + \frac{77}{179} a^{2} + \frac{85}{179}$, $\frac{1}{179} a^{37} + \frac{25}{179} a^{35} - \frac{29}{179} a^{33} + \frac{33}{179} a^{31} - \frac{20}{179} a^{29} - \frac{1}{179} a^{27} + \frac{4}{179} a^{25} + \frac{58}{179} a^{23} + \frac{62}{179} a^{21} - \frac{51}{179} a^{19} - \frac{3}{179} a^{17} + \frac{42}{179} a^{15} - \frac{2}{179} a^{13} - \frac{11}{179} a^{11} - \frac{12}{179} a^{9} - \frac{24}{179} a^{7} + \frac{18}{179} a^{5} + \frac{77}{179} a^{3} + \frac{85}{179} a$, $\frac{1}{179} a^{38} + \frac{62}{179} a^{34} + \frac{42}{179} a^{32} + \frac{50}{179} a^{30} - \frac{38}{179} a^{28} + \frac{29}{179} a^{26} - \frac{42}{179} a^{24} + \frac{44}{179} a^{22} + \frac{10}{179} a^{20} + \frac{19}{179} a^{18} - \frac{62}{179} a^{16} + \frac{22}{179} a^{14} + \frac{39}{179} a^{12} + \frac{84}{179} a^{10} - \frac{82}{179} a^{8} + \frac{81}{179} a^{6} - \frac{15}{179} a^{4} - \frac{50}{179} a^{2} + \frac{23}{179}$, $\frac{1}{179} a^{39} + \frac{62}{179} a^{35} + \frac{42}{179} a^{33} + \frac{50}{179} a^{31} - \frac{38}{179} a^{29} + \frac{29}{179} a^{27} - \frac{42}{179} a^{25} + \frac{44}{179} a^{23} + \frac{10}{179} a^{21} + \frac{19}{179} a^{19} - \frac{62}{179} a^{17} + \frac{22}{179} a^{15} + \frac{39}{179} a^{13} + \frac{84}{179} a^{11} - \frac{82}{179} a^{9} + \frac{81}{179} a^{7} - \frac{15}{179} a^{5} - \frac{50}{179} a^{3} + \frac{23}{179} a$, $\frac{1}{85741} a^{40} - \frac{50}{85741} a^{38} + \frac{233}{85741} a^{36} - \frac{22411}{85741} a^{34} + \frac{21273}{85741} a^{32} + \frac{23332}{85741} a^{30} + \frac{29834}{85741} a^{28} - \frac{20458}{85741} a^{26} - \frac{16504}{85741} a^{24} - \frac{8740}{85741} a^{22} + \frac{15849}{85741} a^{20} - \frac{14387}{85741} a^{18} + \frac{21941}{85741} a^{16} + \frac{4510}{85741} a^{14} - \frac{38366}{85741} a^{12} - \frac{41426}{85741} a^{10} + \frac{12153}{85741} a^{8} + \frac{21545}{85741} a^{6} - \frac{19671}{85741} a^{4} - \frac{34430}{85741} a^{2} - \frac{30649}{85741}$, $\frac{1}{85741} a^{41} - \frac{50}{85741} a^{39} + \frac{233}{85741} a^{37} - \frac{22411}{85741} a^{35} + \frac{21273}{85741} a^{33} + \frac{23332}{85741} a^{31} + \frac{29834}{85741} a^{29} - \frac{20458}{85741} a^{27} - \frac{16504}{85741} a^{25} - \frac{8740}{85741} a^{23} + \frac{15849}{85741} a^{21} - \frac{14387}{85741} a^{19} + \frac{21941}{85741} a^{17} + \frac{4510}{85741} a^{15} - \frac{38366}{85741} a^{13} - \frac{41426}{85741} a^{11} + \frac{12153}{85741} a^{9} + \frac{21545}{85741} a^{7} - \frac{19671}{85741} a^{5} - \frac{34430}{85741} a^{3} - \frac{30649}{85741} a$, $\frac{1}{1773725647879019262913712293886257344128658191130053474400713931727} a^{42} - \frac{7678808732568459060819074787799734437267543194865281488869174}{1773725647879019262913712293886257344128658191130053474400713931727} a^{40} + \frac{1117354887762076870748036239669850930527936157001004395745591052}{1773725647879019262913712293886257344128658191130053474400713931727} a^{38} + \frac{4229697727873115951116815038860055973567279322103878852573601583}{1773725647879019262913712293886257344128658191130053474400713931727} a^{36} - \frac{292769922870197489005933941697121321084828900948687283839139675112}{1773725647879019262913712293886257344128658191130053474400713931727} a^{34} + \frac{8462902383583051320998665931845013268935327054054477488452516041}{1773725647879019262913712293886257344128658191130053474400713931727} a^{32} - \frac{719886799520751357934814465413917347013901807261399462761095201762}{1773725647879019262913712293886257344128658191130053474400713931727} a^{30} + \frac{616104327738972892838947796918866779810869496173014469384234217719}{1773725647879019262913712293886257344128658191130053474400713931727} a^{28} + \frac{116469693112723786488205258454063985926403538530184229460253161146}{1773725647879019262913712293886257344128658191130053474400713931727} a^{26} - \frac{587253741372928811585254085028572481093406182449636910125090514596}{1773725647879019262913712293886257344128658191130053474400713931727} a^{24} - \frac{843203378443540942019081531869901027396191085525746520280752380314}{1773725647879019262913712293886257344128658191130053474400713931727} a^{22} - \frac{470074263924110059085555896345284207138557596355776591023917136580}{1773725647879019262913712293886257344128658191130053474400713931727} a^{20} - \frac{209451347052866603393544052906702313536013039859360207726472835991}{1773725647879019262913712293886257344128658191130053474400713931727} a^{18} - \frac{413880775950260063962665482814941136723804069446498975883733751758}{1773725647879019262913712293886257344128658191130053474400713931727} a^{16} - \frac{875241438996746698457995530676084913500465935931621083853833594497}{1773725647879019262913712293886257344128658191130053474400713931727} a^{14} + \frac{60466585409600690161884940554067928522232302136838937931661601715}{1773725647879019262913712293886257344128658191130053474400713931727} a^{12} - \frac{485726025494363276618532225177901328507276159276176678054676853964}{1773725647879019262913712293886257344128658191130053474400713931727} a^{10} - \frac{165959056844894622769943648680324149238471581618850397529733554640}{1773725647879019262913712293886257344128658191130053474400713931727} a^{8} + \frac{859689877861723093023853377449202712707409616825890819515600280056}{1773725647879019262913712293886257344128658191130053474400713931727} a^{6} + \frac{396192289210241788563947865445458855817839968817628718819661083791}{1773725647879019262913712293886257344128658191130053474400713931727} a^{4} + \frac{752861951381189501111726070124087350492556649186302928822363945813}{1773725647879019262913712293886257344128658191130053474400713931727} a^{2} - \frac{82225258859283191951777519920807440004636171881109873738133652257}{1773725647879019262913712293886257344128658191130053474400713931727}$, $\frac{1}{1773725647879019262913712293886257344128658191130053474400713931727} a^{43} - \frac{7678808732568459060819074787799734437267543194865281488869174}{1773725647879019262913712293886257344128658191130053474400713931727} a^{41} + \frac{1117354887762076870748036239669850930527936157001004395745591052}{1773725647879019262913712293886257344128658191130053474400713931727} a^{39} + \frac{4229697727873115951116815038860055973567279322103878852573601583}{1773725647879019262913712293886257344128658191130053474400713931727} a^{37} - \frac{292769922870197489005933941697121321084828900948687283839139675112}{1773725647879019262913712293886257344128658191130053474400713931727} a^{35} + \frac{8462902383583051320998665931845013268935327054054477488452516041}{1773725647879019262913712293886257344128658191130053474400713931727} a^{33} - \frac{719886799520751357934814465413917347013901807261399462761095201762}{1773725647879019262913712293886257344128658191130053474400713931727} a^{31} + \frac{616104327738972892838947796918866779810869496173014469384234217719}{1773725647879019262913712293886257344128658191130053474400713931727} a^{29} + \frac{116469693112723786488205258454063985926403538530184229460253161146}{1773725647879019262913712293886257344128658191130053474400713931727} a^{27} - \frac{587253741372928811585254085028572481093406182449636910125090514596}{1773725647879019262913712293886257344128658191130053474400713931727} a^{25} - \frac{843203378443540942019081531869901027396191085525746520280752380314}{1773725647879019262913712293886257344128658191130053474400713931727} a^{23} - \frac{470074263924110059085555896345284207138557596355776591023917136580}{1773725647879019262913712293886257344128658191130053474400713931727} a^{21} - \frac{209451347052866603393544052906702313536013039859360207726472835991}{1773725647879019262913712293886257344128658191130053474400713931727} a^{19} - \frac{413880775950260063962665482814941136723804069446498975883733751758}{1773725647879019262913712293886257344128658191130053474400713931727} a^{17} - \frac{875241438996746698457995530676084913500465935931621083853833594497}{1773725647879019262913712293886257344128658191130053474400713931727} a^{15} + \frac{60466585409600690161884940554067928522232302136838937931661601715}{1773725647879019262913712293886257344128658191130053474400713931727} a^{13} - \frac{485726025494363276618532225177901328507276159276176678054676853964}{1773725647879019262913712293886257344128658191130053474400713931727} a^{11} - \frac{165959056844894622769943648680324149238471581618850397529733554640}{1773725647879019262913712293886257344128658191130053474400713931727} a^{9} + \frac{859689877861723093023853377449202712707409616825890819515600280056}{1773725647879019262913712293886257344128658191130053474400713931727} a^{7} + \frac{396192289210241788563947865445458855817839968817628718819661083791}{1773725647879019262913712293886257344128658191130053474400713931727} a^{5} + \frac{752861951381189501111726070124087350492556649186302928822363945813}{1773725647879019262913712293886257344128658191130053474400713931727} a^{3} - \frac{82225258859283191951777519920807440004636171881109873738133652257}{1773725647879019262913712293886257344128658191130053474400713931727} a$
Class group and class number
Not computed
Unit group
| Rank: | $21$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 44 |
| The 44 conjugacy class representatives for $C_{44}$ |
| Character table for $C_{44}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{89}) \), 4.0.11279504.1, 11.11.31181719929966183601.1, 22.22.86534669543385676516186776267386878120889.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $44$ | $22^{2}$ | $44$ | $22^{2}$ | $44$ | $22^{2}$ | $44$ | $44$ | $44$ | $44$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{11}$ | $44$ | $44$ | ${\href{/LocalNumberField/47.11.0.1}{11} }^{4}$ | $22^{2}$ | $44$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 89 | Data not computed | ||||||