Properties

Label 44.0.116...625.1
Degree $44$
Signature $[0, 22]$
Discriminant $1.166\times 10^{83}$
Root discriminant \(77.25\)
Ramified primes $3,5,23$
Class number not computed
Class group not computed
Galois group $C_2\times C_{22}$ (as 44T2)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^44 - x^43 + 43*x^42 - 39*x^41 + 856*x^40 - 700*x^39 + 10478*x^38 - 7678*x^37 + 88356*x^36 - 57644*x^35 + 545008*x^34 - 314432*x^33 + 2548537*x^32 - 1290809*x^31 + 9238279*x^30 - 4075043*x^29 + 26320891*x^28 - 10020719*x^27 + 59401115*x^26 - 19318239*x^25 + 106508095*x^24 - 29235139*x^23 + 151556799*x^22 - 34552164*x^21 + 170215728*x^20 - 30533255*x^19 + 148629623*x^18 - 11758433*x^17 + 94928616*x^16 + 36112685*x^15 + 30135721*x^14 + 126072207*x^13 - 23633656*x^12 + 220881720*x^11 - 44029406*x^10 + 233441302*x^9 - 35764283*x^8 + 155778230*x^7 - 8938748*x^6 + 18093321*x^5 + 18069001*x^4 + 120313546*x^3 - 192566274*x^2 - 256263936*x + 1026529561)
 
gp: K = bnfinit(y^44 - y^43 + 43*y^42 - 39*y^41 + 856*y^40 - 700*y^39 + 10478*y^38 - 7678*y^37 + 88356*y^36 - 57644*y^35 + 545008*y^34 - 314432*y^33 + 2548537*y^32 - 1290809*y^31 + 9238279*y^30 - 4075043*y^29 + 26320891*y^28 - 10020719*y^27 + 59401115*y^26 - 19318239*y^25 + 106508095*y^24 - 29235139*y^23 + 151556799*y^22 - 34552164*y^21 + 170215728*y^20 - 30533255*y^19 + 148629623*y^18 - 11758433*y^17 + 94928616*y^16 + 36112685*y^15 + 30135721*y^14 + 126072207*y^13 - 23633656*y^12 + 220881720*y^11 - 44029406*y^10 + 233441302*y^9 - 35764283*y^8 + 155778230*y^7 - 8938748*y^6 + 18093321*y^5 + 18069001*y^4 + 120313546*y^3 - 192566274*y^2 - 256263936*y + 1026529561, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^44 - x^43 + 43*x^42 - 39*x^41 + 856*x^40 - 700*x^39 + 10478*x^38 - 7678*x^37 + 88356*x^36 - 57644*x^35 + 545008*x^34 - 314432*x^33 + 2548537*x^32 - 1290809*x^31 + 9238279*x^30 - 4075043*x^29 + 26320891*x^28 - 10020719*x^27 + 59401115*x^26 - 19318239*x^25 + 106508095*x^24 - 29235139*x^23 + 151556799*x^22 - 34552164*x^21 + 170215728*x^20 - 30533255*x^19 + 148629623*x^18 - 11758433*x^17 + 94928616*x^16 + 36112685*x^15 + 30135721*x^14 + 126072207*x^13 - 23633656*x^12 + 220881720*x^11 - 44029406*x^10 + 233441302*x^9 - 35764283*x^8 + 155778230*x^7 - 8938748*x^6 + 18093321*x^5 + 18069001*x^4 + 120313546*x^3 - 192566274*x^2 - 256263936*x + 1026529561);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^44 - x^43 + 43*x^42 - 39*x^41 + 856*x^40 - 700*x^39 + 10478*x^38 - 7678*x^37 + 88356*x^36 - 57644*x^35 + 545008*x^34 - 314432*x^33 + 2548537*x^32 - 1290809*x^31 + 9238279*x^30 - 4075043*x^29 + 26320891*x^28 - 10020719*x^27 + 59401115*x^26 - 19318239*x^25 + 106508095*x^24 - 29235139*x^23 + 151556799*x^22 - 34552164*x^21 + 170215728*x^20 - 30533255*x^19 + 148629623*x^18 - 11758433*x^17 + 94928616*x^16 + 36112685*x^15 + 30135721*x^14 + 126072207*x^13 - 23633656*x^12 + 220881720*x^11 - 44029406*x^10 + 233441302*x^9 - 35764283*x^8 + 155778230*x^7 - 8938748*x^6 + 18093321*x^5 + 18069001*x^4 + 120313546*x^3 - 192566274*x^2 - 256263936*x + 1026529561)
 

\( x^{44} - x^{43} + 43 x^{42} - 39 x^{41} + 856 x^{40} - 700 x^{39} + 10478 x^{38} - 7678 x^{37} + \cdots + 1026529561 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $44$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 22]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(116\!\cdots\!625\) \(\medspace = 3^{22}\cdot 5^{22}\cdot 23^{42}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(77.25\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $3^{1/2}5^{1/2}23^{21/22}\approx 77.24613267922518$
Ramified primes:   \(3\), \(5\), \(23\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $44$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(345=3\cdot 5\cdot 23\)
Dirichlet character group:    $\lbrace$$\chi_{345}(256,·)$, $\chi_{345}(1,·)$, $\chi_{345}(86,·)$, $\chi_{345}(11,·)$, $\chi_{345}(269,·)$, $\chi_{345}(271,·)$, $\chi_{345}(16,·)$, $\chi_{345}(274,·)$, $\chi_{345}(19,·)$, $\chi_{345}(151,·)$, $\chi_{345}(281,·)$, $\chi_{345}(284,·)$, $\chi_{345}(29,·)$, $\chi_{345}(31,·)$, $\chi_{345}(304,·)$, $\chi_{345}(34,·)$, $\chi_{345}(164,·)$, $\chi_{345}(296,·)$, $\chi_{345}(301,·)$, $\chi_{345}(176,·)$, $\chi_{345}(179,·)$, $\chi_{345}(56,·)$, $\chi_{345}(59,·)$, $\chi_{345}(191,·)$, $\chi_{345}(196,·)$, $\chi_{345}(199,·)$, $\chi_{345}(331,·)$, $\chi_{345}(206,·)$, $\chi_{345}(79,·)$, $\chi_{345}(209,·)$, $\chi_{345}(211,·)$, $\chi_{345}(341,·)$, $\chi_{345}(214,·)$, $\chi_{345}(221,·)$, $\chi_{345}(251,·)$, $\chi_{345}(229,·)$, $\chi_{345}(104,·)$, $\chi_{345}(109,·)$, $\chi_{345}(239,·)$, $\chi_{345}(244,·)$, $\chi_{345}(119,·)$, $\chi_{345}(121,·)$, $\chi_{345}(319,·)$, $\chi_{345}(254,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{2097152}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $\frac{1}{28657}a^{23}+\frac{23}{28657}a^{21}+\frac{230}{28657}a^{19}+\frac{1311}{28657}a^{17}+\frac{4692}{28657}a^{15}+\frac{10948}{28657}a^{13}-\frac{11913}{28657}a^{11}-\frac{12212}{28657}a^{9}+\frac{9867}{28657}a^{7}+\frac{3289}{28657}a^{5}+\frac{506}{28657}a^{3}+\frac{23}{28657}a-\frac{10946}{28657}$, $\frac{1}{28657}a^{24}+\frac{23}{28657}a^{22}+\frac{230}{28657}a^{20}+\frac{1311}{28657}a^{18}+\frac{4692}{28657}a^{16}+\frac{10948}{28657}a^{14}-\frac{11913}{28657}a^{12}-\frac{12212}{28657}a^{10}+\frac{9867}{28657}a^{8}+\frac{3289}{28657}a^{6}+\frac{506}{28657}a^{4}+\frac{23}{28657}a^{2}-\frac{10946}{28657}a$, $\frac{1}{28657}a^{25}-\frac{299}{28657}a^{21}-\frac{3979}{28657}a^{19}+\frac{3196}{28657}a^{17}-\frac{10997}{28657}a^{15}-\frac{5804}{28657}a^{13}+\frac{3874}{28657}a^{11}+\frac{4173}{28657}a^{9}+\frac{5604}{28657}a^{7}+\frac{10830}{28657}a^{5}-\frac{11615}{28657}a^{3}-\frac{10946}{28657}a^{2}-\frac{529}{28657}a-\frac{6155}{28657}$, $\frac{1}{28657}a^{26}-\frac{299}{28657}a^{22}-\frac{3979}{28657}a^{20}+\frac{3196}{28657}a^{18}-\frac{10997}{28657}a^{16}-\frac{5804}{28657}a^{14}+\frac{3874}{28657}a^{12}+\frac{4173}{28657}a^{10}+\frac{5604}{28657}a^{8}+\frac{10830}{28657}a^{6}-\frac{11615}{28657}a^{4}-\frac{10946}{28657}a^{3}-\frac{529}{28657}a^{2}-\frac{6155}{28657}a$, $\frac{1}{28657}a^{27}+\frac{2898}{28657}a^{21}-\frac{14005}{28657}a^{19}+\frac{8451}{28657}a^{17}-\frac{7089}{28657}a^{15}+\frac{10428}{28657}a^{13}-\frac{4346}{28657}a^{11}-\frac{6345}{28657}a^{9}+\frac{9392}{28657}a^{7}-\frac{2542}{28657}a^{5}-\frac{10946}{28657}a^{4}+\frac{7480}{28657}a^{3}-\frac{6155}{28657}a^{2}+\frac{6877}{28657}a-\frac{5956}{28657}$, $\frac{1}{28657}a^{28}+\frac{2898}{28657}a^{22}-\frac{14005}{28657}a^{20}+\frac{8451}{28657}a^{18}-\frac{7089}{28657}a^{16}+\frac{10428}{28657}a^{14}-\frac{4346}{28657}a^{12}-\frac{6345}{28657}a^{10}+\frac{9392}{28657}a^{8}-\frac{2542}{28657}a^{6}-\frac{10946}{28657}a^{5}+\frac{7480}{28657}a^{4}-\frac{6155}{28657}a^{3}+\frac{6877}{28657}a^{2}-\frac{5956}{28657}a$, $\frac{1}{28657}a^{29}+\frac{5312}{28657}a^{21}+\frac{1022}{28657}a^{19}+\frac{5014}{28657}a^{17}-\frac{3570}{28657}a^{15}-\frac{8351}{28657}a^{13}-\frac{14156}{28657}a^{11}+\frac{8373}{28657}a^{9}+\frac{2578}{28657}a^{7}-\frac{10946}{28657}a^{6}-\frac{9918}{28657}a^{5}-\frac{6155}{28657}a^{4}+\frac{1996}{28657}a^{3}-\frac{5956}{28657}a^{2}-\frac{9340}{28657}a-\frac{1791}{28657}$, $\frac{1}{28657}a^{30}+\frac{5312}{28657}a^{22}+\frac{1022}{28657}a^{20}+\frac{5014}{28657}a^{18}-\frac{3570}{28657}a^{16}-\frac{8351}{28657}a^{14}-\frac{14156}{28657}a^{12}+\frac{8373}{28657}a^{10}+\frac{2578}{28657}a^{8}-\frac{10946}{28657}a^{7}-\frac{9918}{28657}a^{6}-\frac{6155}{28657}a^{5}+\frac{1996}{28657}a^{4}-\frac{5956}{28657}a^{3}-\frac{9340}{28657}a^{2}-\frac{1791}{28657}a$, $\frac{1}{28657}a^{31}-\frac{6526}{28657}a^{21}-\frac{13152}{28657}a^{19}-\frac{3951}{28657}a^{17}-\frac{665}{28657}a^{15}+\frac{3778}{28657}a^{13}-\frac{13084}{28657}a^{11}-\frac{6726}{28657}a^{9}-\frac{10946}{28657}a^{8}-\frac{9769}{28657}a^{7}-\frac{6155}{28657}a^{6}+\frac{11598}{28657}a^{5}-\frac{5956}{28657}a^{4}-\frac{3454}{28657}a^{3}-\frac{1791}{28657}a^{2}-\frac{7548}{28657}a+\frac{99}{28657}$, $\frac{1}{28657}a^{32}-\frac{6526}{28657}a^{22}-\frac{13152}{28657}a^{20}-\frac{3951}{28657}a^{18}-\frac{665}{28657}a^{16}+\frac{3778}{28657}a^{14}-\frac{13084}{28657}a^{12}-\frac{6726}{28657}a^{10}-\frac{10946}{28657}a^{9}-\frac{9769}{28657}a^{8}-\frac{6155}{28657}a^{7}+\frac{11598}{28657}a^{6}-\frac{5956}{28657}a^{5}-\frac{3454}{28657}a^{4}-\frac{1791}{28657}a^{3}-\frac{7548}{28657}a^{2}+\frac{99}{28657}a$, $\frac{1}{57314}a^{33}-\frac{1}{57314}a^{31}-\frac{1}{57314}a^{30}-\frac{1}{57314}a^{29}-\frac{1}{57314}a^{27}-\frac{1}{57314}a^{26}-\frac{1}{57314}a^{24}-\frac{2518}{28657}a^{22}+\frac{10317}{28657}a^{21}-\frac{12965}{28657}a^{20}-\frac{12157}{28657}a^{19}+\frac{9568}{28657}a^{18}+\frac{5621}{57314}a^{17}-\frac{9391}{28657}a^{16}+\frac{761}{57314}a^{15}+\frac{3207}{57314}a^{14}+\frac{14465}{57314}a^{13}+\frac{22195}{57314}a^{12}+\frac{27063}{57314}a^{11}+\frac{17377}{57314}a^{10}+\frac{23191}{57314}a^{9}+\frac{15399}{57314}a^{8}-\frac{8551}{57314}a^{7}-\frac{21713}{57314}a^{6}-\frac{25173}{57314}a^{5}-\frac{26935}{57314}a^{4}+\frac{9933}{57314}a^{3}+\frac{23847}{57314}a^{2}-\frac{10799}{28657}a+\frac{15953}{57314}$, $\frac{1}{117669030460994}a^{34}-\frac{484725595}{117669030460994}a^{33}-\frac{1568437177}{117669030460994}a^{32}-\frac{569818714}{58834515230497}a^{31}-\frac{401187488}{58834515230497}a^{30}+\frac{814392385}{117669030460994}a^{29}+\frac{287413409}{117669030460994}a^{28}-\frac{563909086}{58834515230497}a^{27}-\frac{532952199}{117669030460994}a^{26}-\frac{1698654685}{117669030460994}a^{25}-\frac{1442688621}{117669030460994}a^{24}-\frac{294765078}{58834515230497}a^{23}+\frac{27209261255395}{58834515230497}a^{22}+\frac{4801111248409}{58834515230497}a^{21}+\frac{10891066461473}{58834515230497}a^{20}-\frac{14859054580919}{58834515230497}a^{19}-\frac{30011264745749}{117669030460994}a^{18}+\frac{267071520501}{117669030460994}a^{17}+\frac{32251620577661}{117669030460994}a^{16}+\frac{16375674684463}{58834515230497}a^{15}+\frac{20238030995223}{58834515230497}a^{14}-\frac{6954696579339}{58834515230497}a^{13}-\frac{14522679185815}{58834515230497}a^{12}-\frac{6157330695185}{58834515230497}a^{11}+\frac{19728551592602}{58834515230497}a^{10}+\frac{17765838553212}{58834515230497}a^{9}-\frac{11125446285050}{58834515230497}a^{8}-\frac{3214632603253}{58834515230497}a^{7}-\frac{15064732083598}{58834515230497}a^{6}+\frac{17097450253339}{58834515230497}a^{5}-\frac{3202065823854}{58834515230497}a^{4}+\frac{6395032149385}{58834515230497}a^{3}-\frac{5787290835491}{117669030460994}a^{2}+\frac{12795556282539}{117669030460994}a-\frac{48378285179085}{117669030460994}$, $\frac{1}{117669030460994}a^{35}+\frac{39639}{117669030460994}a^{33}+\frac{1568165765}{117669030460994}a^{32}-\frac{1566873403}{117669030460994}a^{31}-\frac{330144767}{58834515230497}a^{30}-\frac{1260152859}{117669030460994}a^{29}+\frac{907610471}{117669030460994}a^{28}+\frac{136755129}{58834515230497}a^{27}-\frac{395711547}{117669030460994}a^{26}+\frac{497541660}{58834515230497}a^{25}+\frac{222765882}{58834515230497}a^{24}-\frac{107233312}{58834515230497}a^{23}+\frac{21526042678700}{58834515230497}a^{22}+\frac{3261663059129}{58834515230497}a^{21}+\frac{2868013190361}{58834515230497}a^{20}-\frac{35907021155005}{117669030460994}a^{19}+\frac{28222402146835}{58834515230497}a^{18}-\frac{46516896798009}{117669030460994}a^{17}+\frac{17978206507993}{117669030460994}a^{16}+\frac{48847105077343}{117669030460994}a^{15}-\frac{54074294928501}{117669030460994}a^{14}-\frac{9646517459797}{117669030460994}a^{13}+\frac{58541832198639}{117669030460994}a^{12}+\frac{10444830526653}{117669030460994}a^{11}+\frac{47864101400059}{117669030460994}a^{10}-\frac{28633240268773}{117669030460994}a^{9}-\frac{10978329714077}{117669030460994}a^{8}+\frac{30104982634689}{117669030460994}a^{7}+\frac{46907559502905}{117669030460994}a^{6}+\frac{19738492500763}{117669030460994}a^{5}+\frac{25878110711793}{117669030460994}a^{4}-\frac{28010142203431}{58834515230497}a^{3}-\frac{38327685895815}{117669030460994}a^{2}+\frac{25098293550611}{58834515230497}a-\frac{21707628580571}{58834515230497}$, $\frac{1}{117669030460994}a^{36}+\frac{1025712531}{117669030460994}a^{33}-\frac{510958211}{58834515230497}a^{32}-\frac{32120405}{117669030460994}a^{31}+\frac{71338697}{58834515230497}a^{30}-\frac{543579061}{117669030460994}a^{29}+\frac{1971512457}{117669030460994}a^{28}-\frac{86775707}{58834515230497}a^{27}-\frac{672057365}{58834515230497}a^{26}+\frac{1291658163}{117669030460994}a^{25}-\frac{721017130}{58834515230497}a^{24}-\frac{48735754}{58834515230497}a^{23}-\frac{24310693116032}{58834515230497}a^{22}-\frac{19902198626092}{58834515230497}a^{21}-\frac{42916210065839}{117669030460994}a^{20}-\frac{6646334487287}{58834515230497}a^{19}-\frac{22384704024872}{58834515230497}a^{18}+\frac{55049724978297}{117669030460994}a^{17}+\frac{22232566732089}{58834515230497}a^{16}-\frac{5931852666390}{58834515230497}a^{15}-\frac{3018019257300}{58834515230497}a^{14}+\frac{9922217694719}{58834515230497}a^{13}+\frac{555167399235}{58834515230497}a^{12}-\frac{7550880009596}{58834515230497}a^{11}-\frac{9151280858357}{58834515230497}a^{10}+\frac{7577057984707}{58834515230497}a^{9}+\frac{9342606081058}{58834515230497}a^{8}+\frac{3908953741088}{58834515230497}a^{7}-\frac{21569022295183}{58834515230497}a^{6}-\frac{14024884430213}{58834515230497}a^{5}+\frac{45362806612009}{117669030460994}a^{4}-\frac{22821077043348}{58834515230497}a^{3}-\frac{24957971435416}{58834515230497}a^{2}+\frac{15168745589679}{117669030460994}a+\frac{8452445334296}{58834515230497}$, $\frac{1}{117669030460994}a^{37}-\frac{733007}{58834515230497}a^{33}-\frac{268270998}{58834515230497}a^{32}+\frac{488667035}{117669030460994}a^{31}-\frac{104023611}{58834515230497}a^{30}+\frac{1458401001}{117669030460994}a^{29}-\frac{762374147}{117669030460994}a^{28}-\frac{1907410221}{117669030460994}a^{27}-\frac{2041512257}{117669030460994}a^{26}+\frac{137860125}{117669030460994}a^{25}-\frac{779825450}{58834515230497}a^{24}-\frac{137230288}{58834515230497}a^{23}+\frac{951783240745}{58834515230497}a^{22}+\frac{24089271209455}{117669030460994}a^{21}+\frac{13814147092743}{58834515230497}a^{20}+\frac{4734653309830}{58834515230497}a^{19}+\frac{21603208635426}{58834515230497}a^{18}+\frac{7910719119316}{58834515230497}a^{17}-\frac{2368855587115}{117669030460994}a^{16}+\frac{7031696844011}{117669030460994}a^{15}+\frac{26840381455845}{117669030460994}a^{14}-\frac{54832171362343}{117669030460994}a^{13}+\frac{11070800700029}{117669030460994}a^{12}+\frac{33687505119985}{117669030460994}a^{11}+\frac{30984328622439}{117669030460994}a^{10}+\frac{52700032922135}{117669030460994}a^{9}-\frac{9768599862601}{117669030460994}a^{8}+\frac{38604486494923}{117669030460994}a^{7}-\frac{30915323240443}{117669030460994}a^{6}+\frac{14766744390466}{58834515230497}a^{5}-\frac{10438909118253}{117669030460994}a^{4}-\frac{52260107898563}{117669030460994}a^{3}+\frac{38476844665415}{117669030460994}a^{2}-\frac{12641163709097}{117669030460994}a+\frac{27641227518419}{58834515230497}$, $\frac{1}{117669030460994}a^{38}+\frac{43285799}{117669030460994}a^{33}+\frac{1934456201}{117669030460994}a^{32}-\frac{552345681}{117669030460994}a^{31}-\frac{765791659}{58834515230497}a^{30}+\frac{282035738}{58834515230497}a^{29}+\frac{850568675}{117669030460994}a^{28}+\frac{548045935}{58834515230497}a^{27}-\frac{507528890}{58834515230497}a^{26}+\frac{422836109}{58834515230497}a^{25}-\frac{22747579}{117669030460994}a^{24}-\frac{630403290}{58834515230497}a^{23}-\frac{53319931378741}{117669030460994}a^{22}-\frac{24660725271053}{58834515230497}a^{21}-\frac{8333714329784}{58834515230497}a^{20}-\frac{11210942511752}{58834515230497}a^{19}-\frac{179358452604}{429449016281}a^{18}-\frac{1913247610420}{58834515230497}a^{17}+\frac{1876902249541}{117669030460994}a^{16}-\frac{24324914160481}{58834515230497}a^{15}+\frac{27146958436255}{58834515230497}a^{14}-\frac{8390621378704}{58834515230497}a^{13}+\frac{1831972664085}{58834515230497}a^{12}+\frac{8559107131375}{58834515230497}a^{11}-\frac{13952793828626}{58834515230497}a^{10}-\frac{24883074188258}{58834515230497}a^{9}+\frac{8649050313734}{58834515230497}a^{8}+\frac{26963340605436}{58834515230497}a^{7}+\frac{52840980599001}{117669030460994}a^{6}+\frac{12216416472387}{58834515230497}a^{5}-\frac{14392182256858}{58834515230497}a^{4}+\frac{18523831012962}{58834515230497}a^{3}+\frac{16237484767357}{58834515230497}a^{2}+\frac{18998333800063}{58834515230497}a+\frac{18284508087329}{117669030460994}$, $\frac{1}{117669030460994}a^{39}+\frac{29355703}{117669030460994}a^{33}-\frac{9065770}{58834515230497}a^{32}+\frac{978075239}{117669030460994}a^{31}-\frac{566567383}{117669030460994}a^{30}-\frac{1685897729}{117669030460994}a^{29}+\frac{2143201}{858898032562}a^{28}+\frac{1463535465}{117669030460994}a^{27}+\frac{75122484}{58834515230497}a^{26}-\frac{887356998}{58834515230497}a^{25}-\frac{835978608}{58834515230497}a^{24}+\frac{1130845599}{117669030460994}a^{23}+\frac{14082156572043}{58834515230497}a^{22}-\frac{19741980306922}{58834515230497}a^{21}+\frac{3452461081352}{58834515230497}a^{20}+\frac{20506552339666}{58834515230497}a^{19}+\frac{33922119470299}{117669030460994}a^{18}+\frac{3155651140671}{117669030460994}a^{17}-\frac{12201967893017}{117669030460994}a^{16}+\frac{40117926809671}{117669030460994}a^{15}-\frac{25681671001435}{117669030460994}a^{14}-\frac{7493144367815}{117669030460994}a^{13}-\frac{4027616323519}{117669030460994}a^{12}+\frac{37182009576511}{117669030460994}a^{11}-\frac{15352948756021}{117669030460994}a^{10}-\frac{34608832067499}{117669030460994}a^{9}-\frac{25614162233491}{117669030460994}a^{8}+\frac{2331788295535}{58834515230497}a^{7}-\frac{4386829099853}{117669030460994}a^{6}+\frac{808726381921}{117669030460994}a^{5}-\frac{41707853363801}{117669030460994}a^{4}-\frac{308247164693}{858898032562}a^{3}-\frac{23075302611470}{58834515230497}a^{2}+\frac{19077352041144}{58834515230497}a+\frac{18202414910139}{58834515230497}$, $\frac{1}{117669030460994}a^{40}-\frac{648069073}{117669030460994}a^{33}-\frac{165346009}{58834515230497}a^{32}+\frac{235340255}{117669030460994}a^{31}+\frac{606436987}{117669030460994}a^{30}-\frac{116635017}{58834515230497}a^{29}+\frac{905773922}{58834515230497}a^{28}+\frac{634333198}{58834515230497}a^{27}-\frac{412878645}{117669030460994}a^{26}-\frac{116812185}{117669030460994}a^{25}-\frac{92957174}{58834515230497}a^{24}-\frac{180914246}{58834515230497}a^{23}-\frac{2390631787874}{58834515230497}a^{22}+\frac{1169789197074}{58834515230497}a^{21}-\frac{10936305905011}{58834515230497}a^{20}+\frac{32989068883359}{117669030460994}a^{19}+\frac{9334195784156}{58834515230497}a^{18}+\frac{8398110279077}{58834515230497}a^{17}+\frac{10088508245314}{58834515230497}a^{16}-\frac{38676075674223}{117669030460994}a^{15}-\frac{23030509178373}{117669030460994}a^{14}-\frac{9747642416937}{117669030460994}a^{13}+\frac{38170772681953}{117669030460994}a^{12}+\frac{26742254113419}{117669030460994}a^{11}+\frac{25593043217681}{117669030460994}a^{10}+\frac{27253869071903}{117669030460994}a^{9}-\frac{16887741752103}{58834515230497}a^{8}-\frac{51979410756235}{117669030460994}a^{7}-\frac{24881674445153}{117669030460994}a^{6}+\frac{33784540099325}{117669030460994}a^{5}+\frac{2192861544827}{117669030460994}a^{4}+\frac{23874322097675}{58834515230497}a^{3}-\frac{54512938965471}{117669030460994}a^{2}-\frac{30625618239915}{117669030460994}a+\frac{38936778420327}{117669030460994}$, $\frac{1}{117669030460994}a^{41}-\frac{211139955}{58834515230497}a^{33}-\frac{346118249}{58834515230497}a^{32}-\frac{407577694}{58834515230497}a^{31}-\frac{879040069}{117669030460994}a^{30}-\frac{981487042}{58834515230497}a^{29}-\frac{778358085}{117669030460994}a^{28}-\frac{65824180}{58834515230497}a^{27}-\frac{84628549}{117669030460994}a^{26}-\frac{915104379}{117669030460994}a^{25}-\frac{52216636}{58834515230497}a^{24}+\frac{397127723}{58834515230497}a^{23}+\frac{9022964205826}{58834515230497}a^{22}+\frac{18723693453715}{58834515230497}a^{21}-\frac{48559943451147}{117669030460994}a^{20}+\frac{7357987880914}{58834515230497}a^{19}-\frac{40064405091063}{117669030460994}a^{18}+\frac{26723723302298}{58834515230497}a^{17}+\frac{25832401585442}{58834515230497}a^{16}-\frac{14251650874058}{58834515230497}a^{15}+\frac{18204326328606}{58834515230497}a^{14}-\frac{27803744202228}{58834515230497}a^{13}+\frac{18021028911835}{58834515230497}a^{12}+\frac{27659712385265}{58834515230497}a^{11}-\frac{8155948516}{58834515230497}a^{10}+\frac{3525048953767}{117669030460994}a^{9}+\frac{25820148242008}{58834515230497}a^{8}+\frac{11078931645592}{58834515230497}a^{7}+\frac{9917579752639}{58834515230497}a^{6}+\frac{10148265526085}{58834515230497}a^{5}+\frac{32270128839525}{117669030460994}a^{4}+\frac{28413133836317}{58834515230497}a^{3}-\frac{20490821908101}{117669030460994}a^{2}-\frac{2186273147753}{58834515230497}a-\frac{9564320593853}{58834515230497}$, $\frac{1}{117669030460994}a^{42}+\frac{121915397}{117669030460994}a^{33}+\frac{954630074}{58834515230497}a^{32}-\frac{292438039}{58834515230497}a^{31}+\frac{1203172945}{117669030460994}a^{30}+\frac{39230469}{58834515230497}a^{29}-\frac{770528450}{58834515230497}a^{28}-\frac{713543751}{58834515230497}a^{27}+\frac{432762001}{58834515230497}a^{26}+\frac{659143493}{58834515230497}a^{25}+\frac{1426266567}{117669030460994}a^{24}+\frac{547858696}{58834515230497}a^{23}-\frac{4852047845206}{58834515230497}a^{22}+\frac{30433306743555}{117669030460994}a^{21}-\frac{28085948056760}{58834515230497}a^{20}+\frac{1806405416799}{117669030460994}a^{19}+\frac{7999881940135}{58834515230497}a^{18}-\frac{5293540951793}{117669030460994}a^{17}+\frac{19507110861928}{58834515230497}a^{16}-\frac{11047132410353}{117669030460994}a^{15}-\frac{6598813883631}{117669030460994}a^{14}+\frac{8557124305631}{117669030460994}a^{13}-\frac{9097245853773}{117669030460994}a^{12}+\frac{30546081595971}{117669030460994}a^{11}+\frac{15628822577782}{58834515230497}a^{10}-\frac{12584670824583}{117669030460994}a^{9}-\frac{5349444303105}{117669030460994}a^{8}-\frac{54055934185355}{117669030460994}a^{7}-\frac{13595691196481}{117669030460994}a^{6}-\frac{19972089349828}{58834515230497}a^{5}+\frac{6022507588269}{117669030460994}a^{4}-\frac{18457604317166}{58834515230497}a^{3}+\frac{57987262035207}{117669030460994}a^{2}+\frac{28187377635029}{58834515230497}a-\frac{54294844921053}{117669030460994}$, $\frac{1}{117669030460994}a^{43}+\frac{391186998}{58834515230497}a^{33}-\frac{1437124355}{117669030460994}a^{32}+\frac{768132978}{58834515230497}a^{31}+\frac{196114809}{117669030460994}a^{30}-\frac{345905441}{58834515230497}a^{29}+\frac{1267860279}{117669030460994}a^{28}-\frac{332557285}{117669030460994}a^{27}-\frac{685585073}{58834515230497}a^{26}+\frac{975099215}{58834515230497}a^{25}-\frac{872905349}{58834515230497}a^{24}+\frac{949971132}{58834515230497}a^{23}+\frac{288496050837}{117669030460994}a^{22}-\frac{7997590521698}{58834515230497}a^{21}-\frac{37723005960987}{117669030460994}a^{20}-\frac{15910997923128}{58834515230497}a^{19}+\frac{24948159425567}{58834515230497}a^{18}-\frac{11998707844966}{58834515230497}a^{17}+\frac{11643716401220}{58834515230497}a^{16}+\frac{20711034957097}{58834515230497}a^{15}-\frac{16651128833223}{58834515230497}a^{14}+\frac{10220154996531}{58834515230497}a^{13}-\frac{1622937668133}{58834515230497}a^{12}-\frac{8138920764647}{117669030460994}a^{11}-\frac{13382131370907}{58834515230497}a^{10}+\frac{7844726929953}{58834515230497}a^{9}-\frac{17577921853318}{58834515230497}a^{8}+\frac{22964276883760}{58834515230497}a^{7}+\frac{31644694624531}{117669030460994}a^{6}-\frac{29259542748531}{58834515230497}a^{5}-\frac{35995154351015}{117669030460994}a^{4}+\frac{11968825006946}{58834515230497}a^{3}-\frac{7463829660495}{58834515230497}a^{2}-\frac{1349446312586}{58834515230497}a-\frac{248996622482}{58834515230497}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

not computed

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Relative class number: data not computed

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $21$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:  not computed
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  not computed
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr = \mathstrut &\frac{2^{0}\cdot(2\pi)^{22}\cdot R \cdot h}{2\cdot\sqrt{116567320065927752512435466812933331534234135648947894549180382317450046539306640625}}\cr\mathstrut & \text{ some values not computed } \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^44 - x^43 + 43*x^42 - 39*x^41 + 856*x^40 - 700*x^39 + 10478*x^38 - 7678*x^37 + 88356*x^36 - 57644*x^35 + 545008*x^34 - 314432*x^33 + 2548537*x^32 - 1290809*x^31 + 9238279*x^30 - 4075043*x^29 + 26320891*x^28 - 10020719*x^27 + 59401115*x^26 - 19318239*x^25 + 106508095*x^24 - 29235139*x^23 + 151556799*x^22 - 34552164*x^21 + 170215728*x^20 - 30533255*x^19 + 148629623*x^18 - 11758433*x^17 + 94928616*x^16 + 36112685*x^15 + 30135721*x^14 + 126072207*x^13 - 23633656*x^12 + 220881720*x^11 - 44029406*x^10 + 233441302*x^9 - 35764283*x^8 + 155778230*x^7 - 8938748*x^6 + 18093321*x^5 + 18069001*x^4 + 120313546*x^3 - 192566274*x^2 - 256263936*x + 1026529561)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^44 - x^43 + 43*x^42 - 39*x^41 + 856*x^40 - 700*x^39 + 10478*x^38 - 7678*x^37 + 88356*x^36 - 57644*x^35 + 545008*x^34 - 314432*x^33 + 2548537*x^32 - 1290809*x^31 + 9238279*x^30 - 4075043*x^29 + 26320891*x^28 - 10020719*x^27 + 59401115*x^26 - 19318239*x^25 + 106508095*x^24 - 29235139*x^23 + 151556799*x^22 - 34552164*x^21 + 170215728*x^20 - 30533255*x^19 + 148629623*x^18 - 11758433*x^17 + 94928616*x^16 + 36112685*x^15 + 30135721*x^14 + 126072207*x^13 - 23633656*x^12 + 220881720*x^11 - 44029406*x^10 + 233441302*x^9 - 35764283*x^8 + 155778230*x^7 - 8938748*x^6 + 18093321*x^5 + 18069001*x^4 + 120313546*x^3 - 192566274*x^2 - 256263936*x + 1026529561, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^44 - x^43 + 43*x^42 - 39*x^41 + 856*x^40 - 700*x^39 + 10478*x^38 - 7678*x^37 + 88356*x^36 - 57644*x^35 + 545008*x^34 - 314432*x^33 + 2548537*x^32 - 1290809*x^31 + 9238279*x^30 - 4075043*x^29 + 26320891*x^28 - 10020719*x^27 + 59401115*x^26 - 19318239*x^25 + 106508095*x^24 - 29235139*x^23 + 151556799*x^22 - 34552164*x^21 + 170215728*x^20 - 30533255*x^19 + 148629623*x^18 - 11758433*x^17 + 94928616*x^16 + 36112685*x^15 + 30135721*x^14 + 126072207*x^13 - 23633656*x^12 + 220881720*x^11 - 44029406*x^10 + 233441302*x^9 - 35764283*x^8 + 155778230*x^7 - 8938748*x^6 + 18093321*x^5 + 18069001*x^4 + 120313546*x^3 - 192566274*x^2 - 256263936*x + 1026529561);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^44 - x^43 + 43*x^42 - 39*x^41 + 856*x^40 - 700*x^39 + 10478*x^38 - 7678*x^37 + 88356*x^36 - 57644*x^35 + 545008*x^34 - 314432*x^33 + 2548537*x^32 - 1290809*x^31 + 9238279*x^30 - 4075043*x^29 + 26320891*x^28 - 10020719*x^27 + 59401115*x^26 - 19318239*x^25 + 106508095*x^24 - 29235139*x^23 + 151556799*x^22 - 34552164*x^21 + 170215728*x^20 - 30533255*x^19 + 148629623*x^18 - 11758433*x^17 + 94928616*x^16 + 36112685*x^15 + 30135721*x^14 + 126072207*x^13 - 23633656*x^12 + 220881720*x^11 - 44029406*x^10 + 233441302*x^9 - 35764283*x^8 + 155778230*x^7 - 8938748*x^6 + 18093321*x^5 + 18069001*x^4 + 120313546*x^3 - 192566274*x^2 - 256263936*x + 1026529561);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2\times C_{22}$ (as 44T2):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
An abelian group of order 44
The 44 conjugacy class representatives for $C_2\times C_{22}$
Character table for $C_2\times C_{22}$

Intermediate fields

\(\Q(\sqrt{69}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-115}) \), \(\Q(\sqrt{-15}, \sqrt{69})\), \(\Q(\zeta_{23})^+\), \(\Q(\zeta_{69})^+\), 22.0.14844328957686912445797815584548193359375.1, 22.0.1927323443393334271838358868310546875.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $22^{2}$ R R $22^{2}$ $22^{2}$ $22^{2}$ ${\href{/padicField/17.11.0.1}{11} }^{4}$ $22^{2}$ R $22^{2}$ ${\href{/padicField/31.11.0.1}{11} }^{4}$ $22^{2}$ $22^{2}$ $22^{2}$ ${\href{/padicField/47.2.0.1}{2} }^{22}$ ${\href{/padicField/53.11.0.1}{11} }^{4}$ $22^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(3\) Copy content Toggle raw display Deg $44$$2$$22$$22$
\(5\) Copy content Toggle raw display 5.22.11.2$x^{22} + 29296875 x^{2} - 146484375$$2$$11$$11$22T1$[\ ]_{2}^{11}$
5.22.11.2$x^{22} + 29296875 x^{2} - 146484375$$2$$11$$11$22T1$[\ ]_{2}^{11}$
\(23\) Copy content Toggle raw display 23.22.21.1$x^{22} + 506$$22$$1$$21$22T1$[\ ]_{22}$
23.22.21.1$x^{22} + 506$$22$$1$$21$22T1$[\ ]_{22}$