# SageMath code for working with number field 44.0.114960548321016780585007182194561118164129919569806438859981042930068127481856.2 # (Note that not all these functions may be available, and some may take a long time to execute.) # Define the number field: x = polygen(QQ); K. = NumberField(x^44 + 2*x^42 + 4*x^40 + 8*x^38 + 16*x^36 + 32*x^34 + 64*x^32 + 128*x^30 + 256*x^28 + 512*x^26 + 1024*x^24 + 2048*x^22 + 4096*x^20 + 8192*x^18 + 16384*x^16 + 32768*x^14 + 65536*x^12 + 131072*x^10 + 262144*x^8 + 524288*x^6 + 1048576*x^4 + 2097152*x^2 + 4194304) # Defining polynomial: K.defining_polynomial() # Degree over Q: K.degree() # Signature: K.signature() # Discriminant: K.disc() # Ramified primes: K.disc().support() # Integral basis: K.integral_basis() # Class group: K.class_group().invariants() # Unit group: UK = K.unit_group() # Unit rank: UK.rank() # Generator for roots of unity: UK.torsion_generator() # Fundamental units: UK.fundamental_units() # Regulator: K.regulator() # Galois group: K.galois_group(type='pari') # Frobenius cycle types: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]