\\ Pari/GP code for working with number field 44.0.114960548321016780585007182194561118164129919569806438859981042930068127481856.2 \\ (Note that not all these functions may be available, and some may take a long time to execute.) \\ Define the number field: K = bnfinit(x^44 + 2*x^42 + 4*x^40 + 8*x^38 + 16*x^36 + 32*x^34 + 64*x^32 + 128*x^30 + 256*x^28 + 512*x^26 + 1024*x^24 + 2048*x^22 + 4096*x^20 + 8192*x^18 + 16384*x^16 + 32768*x^14 + 65536*x^12 + 131072*x^10 + 262144*x^8 + 524288*x^6 + 1048576*x^4 + 2097152*x^2 + 4194304, 1) \\ Defining polynomial: K.pol \\ Degree over Q: poldegree(K.pol) \\ Signature: K.sign \\ Discriminant: K.disc \\ Ramified primes: factor(abs(K.disc))[,1]~ \\ Integral basis: K.zk \\ Class group: K.clgp \\ Unit rank: K.fu \\ Generator for roots of unity: K.tu[2] \\ Fundamental units: K.fu \\ Regulator: K.reg \\ Galois group: polgalois(K.pol) \\ Frobenius cycle types: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$: idealfactors = idealprimedec(K, p); \\ get the data vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])