Normalized defining polynomial
\( x^{44} + 91 x^{42} + 3865 x^{40} + 101751 x^{38} + 1859689 x^{36} + 25045527 x^{34} + 257459241 x^{32} + 2064667863 x^{30} + 13090266921 x^{28} + 66097680599 x^{26} + 266491698985 x^{24} + 856537374935 x^{22} + 2182247178025 x^{20} + 4362827243735 x^{18} + 6740424007465 x^{16} + 7872887316695 x^{14} + 6740424007465 x^{12} + 4049120256215 x^{10} + 1602545786665 x^{8} + 380494930135 x^{6} + 46621531945 x^{4} + 2191778007 x^{2} + 27008809 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $\frac{1}{5197} a^{23} + \frac{46}{5197} a^{21} + \frac{920}{5197} a^{19} + \frac{94}{5197} a^{17} + \frac{2314}{5197} a^{15} + \frac{2137}{5197} a^{13} + \frac{1034}{5197} a^{11} + \frac{175}{5197} a^{9} + \frac{210}{5197} a^{7} + \frac{140}{5197} a^{5} - \frac{1556}{5197} a^{3} + \frac{331}{5197} a$, $\frac{1}{5025499} a^{24} + \frac{971885}{5025499} a^{22} - \frac{2467655}{5025499} a^{20} - \frac{1662946}{5025499} a^{18} - \frac{964328}{5025499} a^{16} + \frac{121668}{5025499} a^{14} + \frac{2043455}{5025499} a^{12} + \frac{1008393}{5025499} a^{10} - \frac{789734}{5025499} a^{8} - \frac{1631718}{5025499} a^{6} - \frac{666772}{5025499} a^{4} - \frac{1194979}{5025499} a^{2} + \frac{88}{967}$, $\frac{1}{5025499} a^{25} + \frac{50}{5025499} a^{23} - \frac{1942574}{5025499} a^{21} - \frac{1212324}{5025499} a^{19} - \frac{1857836}{5025499} a^{17} - \frac{2306469}{5025499} a^{15} + \frac{763147}{5025499} a^{13} + \frac{1230803}{5025499} a^{11} + \frac{6107}{5025499} a^{9} + \frac{328391}{5025499} a^{7} - \frac{1035199}{5025499} a^{5} - \frac{1694918}{5025499} a^{3} + \frac{411887}{5025499} a$, $\frac{1}{5025499} a^{26} - \frac{281834}{5025499} a^{22} + \frac{1558450}{5025499} a^{20} + \frac{881480}{5025499} a^{18} + \frac{680440}{5025499} a^{16} - \frac{294754}{5025499} a^{14} - \frac{431967}{5025499} a^{12} - \frac{158553}{5025499} a^{10} - \frac{388901}{5025499} a^{8} + \frac{142717}{5025499} a^{6} + \frac{1490688}{5025499} a^{4} - \frac{145151}{5025499} a^{2} + \frac{435}{967}$, $\frac{1}{5025499} a^{27} - \frac{437}{5025499} a^{23} - \frac{573785}{5025499} a^{21} - \frac{1559228}{5025499} a^{19} + \frac{2004263}{5025499} a^{17} - \frac{2456966}{5025499} a^{15} - \frac{2146458}{5025499} a^{13} - \frac{672997}{5025499} a^{11} - \frac{1399416}{5025499} a^{9} - \frac{1069901}{5025499} a^{7} + \frac{682276}{5025499} a^{5} - \frac{780470}{5025499} a^{3} - \frac{81379}{5025499} a$, $\frac{1}{5025499} a^{28} + \frac{1998044}{5025499} a^{22} + \frac{557822}{5025499} a^{20} - \frac{1031283}{5025499} a^{18} - \frac{1726386}{5025499} a^{16} + \frac{767468}{5025499} a^{14} - \frac{2221984}{5025499} a^{12} + \frac{2049912}{5025499} a^{10} + \frac{575772}{5025499} a^{8} + \frac{1242368}{5025499} a^{6} - \frac{680892}{5025499} a^{4} + \frac{364694}{5025499} a^{2} - \frac{224}{967}$, $\frac{1}{5025499} a^{29} + \frac{222}{5025499} a^{23} - \frac{883008}{5025499} a^{21} + \frac{305111}{5025499} a^{19} + \frac{1447308}{5025499} a^{17} + \frac{1266440}{5025499} a^{15} + \frac{106552}{5025499} a^{13} + \frac{1782053}{5025499} a^{11} - \frac{2283647}{5025499} a^{9} - \frac{1183835}{5025499} a^{7} + \frac{1051972}{5025499} a^{5} - \frac{1808155}{5025499} a^{3} + \frac{922658}{5025499} a$, $\frac{1}{5025499} a^{30} - \frac{545021}{5025499} a^{22} + \frac{345130}{5025499} a^{20} - \frac{1265606}{5025499} a^{18} - \frac{749201}{5025499} a^{16} - \frac{1776249}{5025499} a^{14} + \frac{429953}{5025499} a^{12} + \frac{562}{5025499} a^{10} - \frac{1755352}{5025499} a^{8} + \frac{1457440}{5025499} a^{6} + \frac{475758}{5025499} a^{4} - \frac{143451}{5025499} a^{2} - \frac{196}{967}$, $\frac{1}{5025499} a^{31} + \frac{367}{5025499} a^{23} + \frac{305483}{5025499} a^{21} - \frac{2058546}{5025499} a^{19} + \frac{262281}{5025499} a^{17} - \frac{1148666}{5025499} a^{15} + \frac{8341}{5025499} a^{13} + \frac{1075866}{5025499} a^{11} - \frac{1796933}{5025499} a^{9} + \frac{402443}{5025499} a^{7} + \frac{1447593}{5025499} a^{5} + \frac{542152}{5025499} a^{3} - \frac{1413148}{5025499} a$, $\frac{1}{5025499} a^{32} + \frac{434117}{5025499} a^{22} - \frac{1018981}{5025499} a^{20} + \frac{2478084}{5025499} a^{18} + \frac{974780}{5025499} a^{16} + \frac{585676}{5025499} a^{14} - \frac{72768}{5025499} a^{12} + \frac{9762}{5025499} a^{10} - \frac{1244121}{5025499} a^{8} + \frac{2253718}{5025499} a^{6} - \frac{1001975}{5025499} a^{4} - \frac{74268}{5025499} a^{2} - \frac{385}{967}$, $\frac{1}{5025499} a^{33} - \frac{66}{5025499} a^{23} - \frac{889403}{5025499} a^{21} + \frac{44145}{5025499} a^{19} + \frac{365570}{5025499} a^{17} + \frac{986014}{5025499} a^{15} + \frac{1795476}{5025499} a^{13} - \frac{1666049}{5025499} a^{11} - \frac{1843661}{5025499} a^{9} + \frac{1534270}{5025499} a^{7} - \frac{1481607}{5025499} a^{5} + \frac{2097614}{5025499} a^{3} + \frac{24053}{5025499} a$, $\frac{1}{5025499} a^{34} - \frac{2076480}{5025499} a^{22} - \frac{2005117}{5025499} a^{20} + \frac{1172112}{5025499} a^{18} - \frac{2353646}{5025499} a^{16} - \frac{225434}{5025499} a^{14} - \frac{2486492}{5025499} a^{12} - \frac{621210}{5025499} a^{10} - \frac{333184}{5025499} a^{8} + \frac{1385983}{5025499} a^{6} - \frac{1705346}{5025499} a^{4} + \frac{1563423}{5025499} a^{2} + \frac{6}{967}$, $\frac{1}{5025499} a^{35} - \frac{331}{5025499} a^{23} - \frac{1986744}{5025499} a^{21} + \frac{1539572}{5025499} a^{19} + \frac{1835398}{5025499} a^{17} - \frac{393692}{5025499} a^{15} + \frac{1753803}{5025499} a^{13} + \frac{228783}{5025499} a^{11} + \frac{1156963}{5025499} a^{9} + \frac{158860}{5025499} a^{7} + \frac{2502071}{5025499} a^{5} + \frac{2471436}{5025499} a^{3} - \frac{1256862}{5025499} a$, $\frac{1}{5025499} a^{36} - \frac{1924745}{5025499} a^{22} - \frac{1123395}{5025499} a^{20} - \frac{820337}{5025499} a^{18} + \frac{2045676}{5025499} a^{16} + \frac{1821919}{5025499} a^{14} - \frac{1829977}{5025499} a^{12} - \frac{1773387}{5025499} a^{10} + \frac{82854}{5025499} a^{8} + \frac{131806}{5025499} a^{6} - \frac{2133639}{5025499} a^{4} + \frac{219510}{5025499} a^{2} + \frac{118}{967}$, $\frac{1}{5025499} a^{37} - \frac{415}{5025499} a^{23} + \frac{1962302}{5025499} a^{21} + \frac{587615}{5025499} a^{19} + \frac{2014732}{5025499} a^{17} + \frac{2129425}{5025499} a^{15} - \frac{394949}{5025499} a^{13} - \frac{2113771}{5025499} a^{11} + \frac{132171}{5025499} a^{9} + \frac{2201186}{5025499} a^{7} + \frac{921114}{5025499} a^{5} + \frac{1159434}{5025499} a^{3} - \frac{671897}{5025499} a$, $\frac{1}{5025499} a^{38} - \frac{1770842}{5025499} a^{22} + \frac{1712586}{5025499} a^{20} + \frac{385505}{5025499} a^{18} - \frac{1052274}{5025499} a^{16} - \frac{157719}{5025499} a^{14} + \frac{1636222}{5025499} a^{12} + \frac{1498849}{5025499} a^{10} + \frac{1119011}{5025499} a^{8} + \frac{2200509}{5025499} a^{6} + \frac{851499}{5025499} a^{4} + \frac{936219}{5025499} a^{2} - \frac{226}{967}$, $\frac{1}{5025499} a^{39} - \frac{265}{5025499} a^{23} - \frac{2274355}{5025499} a^{21} + \frac{1054669}{5025499} a^{19} - \frac{459503}{5025499} a^{17} + \frac{1175774}{5025499} a^{15} + \frac{1158524}{5025499} a^{13} - \frac{2031668}{5025499} a^{11} - \frac{610952}{5025499} a^{9} + \frac{2134753}{5025499} a^{7} + \frac{2482828}{5025499} a^{5} - \frac{108141}{5025499} a^{3} + \frac{1928581}{5025499} a$, $\frac{1}{5025499} a^{40} - \frac{1025279}{5025499} a^{22} + \frac{440964}{5025499} a^{20} + \frac{1103719}{5025499} a^{18} + \frac{1929303}{5025499} a^{16} - \frac{1777949}{5025499} a^{14} + \frac{1755514}{5025499} a^{12} + \frac{261746}{5025499} a^{10} - \frac{1099298}{5025499} a^{8} + \frac{2270472}{5025499} a^{6} - \frac{910256}{5025499} a^{4} + \frac{1865583}{5025499} a^{2} + \frac{112}{967}$, $\frac{1}{5025499} a^{41} - \frac{259}{5025499} a^{23} + \frac{2362393}{5025499} a^{21} - \frac{671693}{5025499} a^{19} - \frac{2228797}{5025499} a^{17} - \frac{1917197}{5025499} a^{15} + \frac{1105690}{5025499} a^{13} - \frac{247863}{5025499} a^{11} + \frac{2386737}{5025499} a^{9} + \frac{1428215}{5025499} a^{7} + \frac{1878572}{5025499} a^{5} + \frac{17646}{5025499} a^{3} - \frac{1870248}{5025499} a$, $\frac{1}{5025499} a^{42} - \frac{2219841}{5025499} a^{22} - \frac{1555965}{5025499} a^{20} - \frac{738897}{5025499} a^{18} - \frac{403199}{5025499} a^{16} + \frac{2464708}{5025499} a^{14} + \frac{1329587}{5025499} a^{12} + \frac{2234576}{5025499} a^{10} - \frac{2092931}{5025499} a^{8} + \frac{1405526}{5025499} a^{6} - \frac{1809336}{5025499} a^{4} + \frac{211129}{5025499} a^{2} - \frac{416}{967}$, $\frac{1}{5025499} a^{43} + \frac{391}{5025499} a^{23} + \frac{64727}{5025499} a^{21} + \frac{1521949}{5025499} a^{19} + \frac{2253150}{5025499} a^{17} - \frac{1003921}{5025499} a^{15} + \frac{1894315}{5025499} a^{13} + \frac{1301421}{5025499} a^{11} - \frac{515754}{5025499} a^{9} + \frac{282839}{5025499} a^{7} + \frac{2467705}{5025499} a^{5} - \frac{1952050}{5025499} a^{3} - \frac{988014}{5025499} a$
Class group and class number
Not computed
Unit group
| Rank: | $21$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1}{5197} a^{23} - \frac{46}{5197} a^{21} - \frac{920}{5197} a^{19} - \frac{10488}{5197} a^{17} - \frac{75072}{5197} a^{15} - \frac{350336}{5197} a^{13} - \frac{1071616}{5197} a^{11} - \frac{2104960}{5197} a^{9} - \frac{2525952}{5197} a^{7} - \frac{1683968}{5197} a^{5} - \frac{518144}{5197} a^{3} - \frac{47104}{5197} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{22}$ (as 44T2):
| An abelian group of order 44 |
| The 44 conjugacy class representatives for $C_2\times C_{22}$ |
| Character table for $C_2\times C_{22}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $22^{2}$ | ${\href{/LocalNumberField/5.11.0.1}{11} }^{4}$ | R | $22^{2}$ | $22^{2}$ | ${\href{/LocalNumberField/17.11.0.1}{11} }^{4}$ | $22^{2}$ | R | ${\href{/LocalNumberField/29.11.0.1}{11} }^{4}$ | $22^{2}$ | $22^{2}$ | $22^{2}$ | $22^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{22}$ | $22^{2}$ | $22^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 7 | Data not computed | ||||||
| 23 | Data not computed | ||||||