# SageMath code for working with number field 43.43.444677695956607074780919035502815976195331208356891344496189409566167816104341684988715963441514628066825276961.1 # Some of these functions may take a long time to execute (this depends on the field). # Define the number field: x = polygen(QQ); K. = NumberField(x^43 - x^42 - 210*x^41 + 177*x^40 + 19424*x^39 - 12392*x^38 - 1053196*x^37 + 410572*x^36 + 37567316*x^35 - 4029555*x^34 - 936601673*x^33 - 185951871*x^32 + 16894280750*x^31 + 8734312688*x^30 - 224649876009*x^29 - 189102381409*x^28 + 2218265633870*x^27 + 2604819705111*x^26 - 16218499586789*x^25 - 24791417254787*x^24 + 86521587673786*x^23 + 168116844068603*x^22 - 325504806681996*x^21 - 819692515707425*x^20 + 795734675389219*x^19 + 2859558999201013*x^18 - 937302717934781*x^17 - 7011360351157045*x^16 - 902655412698460*x^15 + 11681897146129224*x^14 + 5604720542659268*x^13 - 12486138055465655*x^12 - 9886946345787043*x^11 + 7728522779787490*x^10 + 9075115953805640*x^9 - 2183897418754987*x^8 - 4579013283800046*x^7 - 40649514655288*x^6 + 1249295360564226*x^5 + 160575454035341*x^4 - 166814479770181*x^3 - 29312399288701*x^2 + 7715035819499*x + 1403424452501) # Defining polynomial: K.defining_polynomial() # Degree over Q: K.degree() # Signature: K.signature() # Discriminant: K.disc() # Ramified primes: K.disc().support() # Autmorphisms: K.automorphisms() # Integral basis: K.integral_basis() # Class group: K.class_group().invariants() # Unit group: UK = K.unit_group() # Unit rank: UK.rank() # Generator for roots of unity: UK.torsion_generator() # Fundamental units: UK.fundamental_units() # Regulator: K.regulator() # Analytic class number formula: # self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K. = NumberField(x^43 - x^42 - 210*x^41 + 177*x^40 + 19424*x^39 - 12392*x^38 - 1053196*x^37 + 410572*x^36 + 37567316*x^35 - 4029555*x^34 - 936601673*x^33 - 185951871*x^32 + 16894280750*x^31 + 8734312688*x^30 - 224649876009*x^29 - 189102381409*x^28 + 2218265633870*x^27 + 2604819705111*x^26 - 16218499586789*x^25 - 24791417254787*x^24 + 86521587673786*x^23 + 168116844068603*x^22 - 325504806681996*x^21 - 819692515707425*x^20 + 795734675389219*x^19 + 2859558999201013*x^18 - 937302717934781*x^17 - 7011360351157045*x^16 - 902655412698460*x^15 + 11681897146129224*x^14 + 5604720542659268*x^13 - 12486138055465655*x^12 - 9886946345787043*x^11 + 7728522779787490*x^10 + 9075115953805640*x^9 - 2183897418754987*x^8 - 4579013283800046*x^7 - 40649514655288*x^6 + 1249295360564226*x^5 + 160575454035341*x^4 - 166814479770181*x^3 - 29312399288701*x^2 + 7715035819499*x + 1403424452501) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK)))) # Intermediate fields: K.subfields()[1:-1] # Galois group: K.galois_group(type='pari') # Frobenius cycle types: # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]