magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -44, 44, 3267, -3267, -72886, 72886, 753918, -753918, -4413607, 4413607, 16350448, -16350448, -41150012, 41150012, 73850908, -73850908, -97804877, 97804877, 97942948, -97942948, -75433697, 75433697, 45176143, -45176143, -21159269, 21159269, 7756167, -7756167, -2214673, 2214673, 487103, -487103, -80884, 80884, 9803, -9803, -818, 818, 42, -42, -1, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^42 - x^41 - 42*x^40 + 42*x^39 + 818*x^38 - 818*x^37 - 9803*x^36 + 9803*x^35 + 80884*x^34 - 80884*x^33 - 487103*x^32 + 487103*x^31 + 2214673*x^30 - 2214673*x^29 - 7756167*x^28 + 7756167*x^27 + 21159269*x^26 - 21159269*x^25 - 45176143*x^24 + 45176143*x^23 + 75433697*x^22 - 75433697*x^21 - 97942948*x^20 + 97942948*x^19 + 97804877*x^18 - 97804877*x^17 - 73850908*x^16 + 73850908*x^15 + 41150012*x^14 - 41150012*x^13 - 16350448*x^12 + 16350448*x^11 + 4413607*x^10 - 4413607*x^9 - 753918*x^8 + 753918*x^7 + 72886*x^6 - 72886*x^5 - 3267*x^4 + 3267*x^3 + 44*x^2 - 44*x + 1)
gp: K = bnfinit(x^42 - x^41 - 42*x^40 + 42*x^39 + 818*x^38 - 818*x^37 - 9803*x^36 + 9803*x^35 + 80884*x^34 - 80884*x^33 - 487103*x^32 + 487103*x^31 + 2214673*x^30 - 2214673*x^29 - 7756167*x^28 + 7756167*x^27 + 21159269*x^26 - 21159269*x^25 - 45176143*x^24 + 45176143*x^23 + 75433697*x^22 - 75433697*x^21 - 97942948*x^20 + 97942948*x^19 + 97804877*x^18 - 97804877*x^17 - 73850908*x^16 + 73850908*x^15 + 41150012*x^14 - 41150012*x^13 - 16350448*x^12 + 16350448*x^11 + 4413607*x^10 - 4413607*x^9 - 753918*x^8 + 753918*x^7 + 72886*x^6 - 72886*x^5 - 3267*x^4 + 3267*x^3 + 44*x^2 - 44*x + 1, 1)
\( x^{42} - x^{41} - 42 x^{40} + 42 x^{39} + 818 x^{38} - 818 x^{37} - 9803 x^{36} + 9803 x^{35} + 80884 x^{34} - 80884 x^{33} - 487103 x^{32} + 487103 x^{31} + 2214673 x^{30} - 2214673 x^{29} - 7756167 x^{28} + 7756167 x^{27} + 21159269 x^{26} - 21159269 x^{25} - 45176143 x^{24} + 45176143 x^{23} + 75433697 x^{22} - 75433697 x^{21} - 97942948 x^{20} + 97942948 x^{19} + 97804877 x^{18} - 97804877 x^{17} - 73850908 x^{16} + 73850908 x^{15} + 41150012 x^{14} - 41150012 x^{13} - 16350448 x^{12} + 16350448 x^{11} + 4413607 x^{10} - 4413607 x^{9} - 753918 x^{8} + 753918 x^{7} + 72886 x^{6} - 72886 x^{5} - 3267 x^{4} + 3267 x^{3} + 44 x^{2} - 44 x + 1 \)
magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
| Degree: | | $42$ |
|
| Signature: | | $[42, 0]$ |
|
| Discriminant: | | \(98118980687896783910098639727548084722605054105289047332129555342401833439729=3^{21}\cdot 43^{41}\) | magma: Discriminant(Integers(K));
|
| Root discriminant: | | $68.10$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
|
| Ramified primes: | | $3, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
gp: factor(abs(K.disc))[,1]~
|
| This field is Galois and abelian over $\Q$. |
| Conductor: | | \(129=3\cdot 43\) |
| Dirichlet character group:
| |
$\lbrace$$\chi_{129}(128,·)$, $\chi_{129}(1,·)$, $\chi_{129}(2,·)$, $\chi_{129}(4,·)$, $\chi_{129}(5,·)$, $\chi_{129}(8,·)$, $\chi_{129}(10,·)$, $\chi_{129}(13,·)$, $\chi_{129}(16,·)$, $\chi_{129}(20,·)$, $\chi_{129}(25,·)$, $\chi_{129}(26,·)$, $\chi_{129}(29,·)$, $\chi_{129}(31,·)$, $\chi_{129}(32,·)$, $\chi_{129}(40,·)$, $\chi_{129}(49,·)$, $\chi_{129}(50,·)$, $\chi_{129}(52,·)$, $\chi_{129}(58,·)$, $\chi_{129}(62,·)$, $\chi_{129}(64,·)$, $\chi_{129}(65,·)$, $\chi_{129}(67,·)$, $\chi_{129}(71,·)$, $\chi_{129}(77,·)$, $\chi_{129}(79,·)$, $\chi_{129}(80,·)$, $\chi_{129}(89,·)$, $\chi_{129}(97,·)$, $\chi_{129}(98,·)$, $\chi_{129}(100,·)$, $\chi_{129}(103,·)$, $\chi_{129}(104,·)$, $\chi_{129}(109,·)$, $\chi_{129}(113,·)$, $\chi_{129}(116,·)$, $\chi_{129}(119,·)$, $\chi_{129}(121,·)$, $\chi_{129}(124,·)$, $\chi_{129}(125,·)$, $\chi_{129}(127,·)$$\rbrace$
|
| This is not a CM field. |
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$, $a^{37}$, $a^{38}$, $a^{39}$, $a^{40}$, $a^{41}$
Trivial group, which has order $1$
(assuming GRH)
sage: K.class_group().invariants()
magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
| Rank: | | $41$
|
|
| Torsion generator: | | \( -1 \) (order $2$)
| magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
|
| Fundamental units: | | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
(assuming GRH)
| magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
|
| Regulator: | | \( 16535537450237775000000000 \)
(assuming GRH)
|
|
$C_{42}$ (as 42T1):
sage: K.galois_group(type='pari')
Fields in the database are given up to isomorphism. Isomorphic
intermediate fields are shown with their multiplicities.
| $p$ |
2 |
3 |
5 |
7 |
11 |
13 |
17 |
19 |
23 |
29 |
31 |
37 |
41 |
43 |
47 |
53 |
59 |
| Cycle type |
${\href{/LocalNumberField/2.7.0.1}{7} }^{6}$ |
R |
$21^{2}$ |
${\href{/LocalNumberField/7.6.0.1}{6} }^{7}$ |
${\href{/LocalNumberField/11.14.0.1}{14} }^{3}$ |
$21^{2}$ |
$42$ |
$42$ |
$42$ |
$21^{2}$ |
$21^{2}$ |
${\href{/LocalNumberField/37.6.0.1}{6} }^{7}$ |
${\href{/LocalNumberField/41.14.0.1}{14} }^{3}$ |
R |
${\href{/LocalNumberField/47.14.0.1}{14} }^{3}$ |
$42$ |
${\href{/LocalNumberField/59.14.0.1}{14} }^{3}$ |
In the table, R denotes a ramified prime.
Cycle lengths which are repeated in a cycle type are indicated by
exponents.
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])