Normalized defining polynomial
\( x^{42} - 63 x^{40} + 1764 x^{38} - 29043 x^{36} - 29 x^{35} + 313845 x^{34} + 1295 x^{33} - 2356263 x^{32} - 24605 x^{31} + 12710649 x^{30} + 262360 x^{29} - 50338309 x^{28} - 1751015 x^{27} + 148468453 x^{26} + 7757582 x^{25} - 329114310 x^{24} - 23675820 x^{23} + 550880022 x^{22} + 50961633 x^{21} - 696364921 x^{20} - 78352652 x^{19} + 661675518 x^{18} + 86284422 x^{17} - 467756891 x^{16} - 67555180 x^{15} + 241883075 x^{14} + 36893815 x^{13} - 89215119 x^{12} - 13584956 x^{11} + 22638112 x^{10} + 3191321 x^{9} - 3752308 x^{8} - 437383 x^{7} + 374801 x^{6} + 29995 x^{5} - 19355 x^{4} - 798 x^{3} + 343 x^{2} + 14 x - 1 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$, $a^{37}$, $a^{38}$, $a^{39}$, $a^{40}$, $\frac{1}{5574417667875906684571331862907077791420203092569040939871906901501749358719930594501} a^{41} - \frac{419802150277063304833901008937743260546954026958290224983522378842242303613939713216}{5574417667875906684571331862907077791420203092569040939871906901501749358719930594501} a^{40} - \frac{1471035029198610395087072600850415197412469763046774956790015354107579485537980375361}{5574417667875906684571331862907077791420203092569040939871906901501749358719930594501} a^{39} - \frac{178147581111743355302967261314472484091820476938649492080141873628586554088083773123}{5574417667875906684571331862907077791420203092569040939871906901501749358719930594501} a^{38} - \frac{2033745488011368667493044959379858345622109294035927615541487542367159217906381473366}{5574417667875906684571331862907077791420203092569040939871906901501749358719930594501} a^{37} + \frac{1956479879462696131703877233028640640584054876680896884567804058439076805334957638871}{5574417667875906684571331862907077791420203092569040939871906901501749358719930594501} a^{36} - \frac{302692209309895326027646344271271289064045904373083011726998052683764098079084543724}{5574417667875906684571331862907077791420203092569040939871906901501749358719930594501} a^{35} - \frac{1459218121793433358566944677481669982514926857665708131694161250625851910907150585227}{5574417667875906684571331862907077791420203092569040939871906901501749358719930594501} a^{34} + \frac{883132117750862109637612744234354110799083668897463659347308041029477060680080667803}{5574417667875906684571331862907077791420203092569040939871906901501749358719930594501} a^{33} - \frac{963196252265693766079132875988255455184594125297327025570436590031661371198774810750}{5574417667875906684571331862907077791420203092569040939871906901501749358719930594501} a^{32} + \frac{1585981878478714790468355407750516485980092848567740426176041649234220692499423640410}{5574417667875906684571331862907077791420203092569040939871906901501749358719930594501} a^{31} - \frac{172205685844614270072687599163491225191233233236051814503221736672963960273855804480}{5574417667875906684571331862907077791420203092569040939871906901501749358719930594501} a^{30} + \frac{2295084418229037799870616468362213830688628644038008254837490828217796025542437564148}{5574417667875906684571331862907077791420203092569040939871906901501749358719930594501} a^{29} + \frac{2359923129067470633289664723981637638993145420096597237957916053292154411372996271727}{5574417667875906684571331862907077791420203092569040939871906901501749358719930594501} a^{28} + \frac{1050341687307242454434453329470997079665212809395735685967006230880342970846475733253}{5574417667875906684571331862907077791420203092569040939871906901501749358719930594501} a^{27} + \frac{779867946317405466994564930594820324541730351888670934220500884164354531690014105532}{5574417667875906684571331862907077791420203092569040939871906901501749358719930594501} a^{26} - \frac{85161079767038977163587247072171138045423080252353040411069705408091439828262036975}{5574417667875906684571331862907077791420203092569040939871906901501749358719930594501} a^{25} - \frac{2723665688371616923047095897623301246136278767000641872639762790864181414038037860937}{5574417667875906684571331862907077791420203092569040939871906901501749358719930594501} a^{24} - \frac{435884415956051212485598701529875926416006927132492134171646979298624991256595090482}{5574417667875906684571331862907077791420203092569040939871906901501749358719930594501} a^{23} - \frac{2588581461699903491790706615733081610508047431136366923130387470961572341390119344847}{5574417667875906684571331862907077791420203092569040939871906901501749358719930594501} a^{22} - \frac{986478990107979802525418922727005129346423007385760456631025089129963850232404532736}{5574417667875906684571331862907077791420203092569040939871906901501749358719930594501} a^{21} - \frac{1250002761527275805165339271112278904871953648116605618260716490316225630197856720596}{5574417667875906684571331862907077791420203092569040939871906901501749358719930594501} a^{20} + \frac{295310253413550824054184485098652102602983207211538319564139125534243514771290601563}{5574417667875906684571331862907077791420203092569040939871906901501749358719930594501} a^{19} - \frac{2060398908873633969098770282811563983435703582477037052833490549150205079480606977022}{5574417667875906684571331862907077791420203092569040939871906901501749358719930594501} a^{18} - \frac{652842495243417219035055837368960909741032235715866461293074450374673048682856795670}{5574417667875906684571331862907077791420203092569040939871906901501749358719930594501} a^{17} + \frac{50571618761604495796151968176176217397965843596763118960528960953320943435149046371}{5574417667875906684571331862907077791420203092569040939871906901501749358719930594501} a^{16} + \frac{972977242844462932328726923451344522805303532881476071901895780010531075623469845148}{5574417667875906684571331862907077791420203092569040939871906901501749358719930594501} a^{15} + \frac{545687630573303154437653721368091813885618020738267542858166481238886001475583941608}{5574417667875906684571331862907077791420203092569040939871906901501749358719930594501} a^{14} + \frac{1008595933992687179061641917838711336238414921906197038999410565347679244580324186111}{5574417667875906684571331862907077791420203092569040939871906901501749358719930594501} a^{13} + \frac{1056564887298088564839137680993768116619585239489066103268550253348736290366415147824}{5574417667875906684571331862907077791420203092569040939871906901501749358719930594501} a^{12} - \frac{1092870283051047101306468128116776631942006299124019923218209722501262490850362846068}{5574417667875906684571331862907077791420203092569040939871906901501749358719930594501} a^{11} - \frac{740921059837909116871765880879744139553918064713782677705906448569571740633507477774}{5574417667875906684571331862907077791420203092569040939871906901501749358719930594501} a^{10} - \frac{1970554289953415088855113644709633218854424413809627819082097714373336799633099133060}{5574417667875906684571331862907077791420203092569040939871906901501749358719930594501} a^{9} + \frac{727130019561874876197586503500920509101777648177024265659448311786943676902566839292}{5574417667875906684571331862907077791420203092569040939871906901501749358719930594501} a^{8} - \frac{611399016462095752712406622724226090203200547472004368283004664252166816980315231602}{5574417667875906684571331862907077791420203092569040939871906901501749358719930594501} a^{7} - \frac{2350573257509076055637834131915216817181130497988737496729832933712997751625342320756}{5574417667875906684571331862907077791420203092569040939871906901501749358719930594501} a^{6} + \frac{1112149493467046316292456581995747040525525163663972361995274092849424368486042573762}{5574417667875906684571331862907077791420203092569040939871906901501749358719930594501} a^{5} + \frac{244776757177600817265560335730665610447211470778264018752965925004701598697765693654}{5574417667875906684571331862907077791420203092569040939871906901501749358719930594501} a^{4} - \frac{2097615419869473403243653944333261571457138542586660657416036935090093370132739334540}{5574417667875906684571331862907077791420203092569040939871906901501749358719930594501} a^{3} + \frac{242152958200700588180057082297881060375942942590059855880681668980487485954436712717}{5574417667875906684571331862907077791420203092569040939871906901501749358719930594501} a^{2} + \frac{1014130534675329717133069556067664652418308380085192988450642291321991301524536835825}{5574417667875906684571331862907077791420203092569040939871906901501749358719930594501} a - \frac{2047966679726240753026002689119110138394710432401388077544981730120563537240947924747}{5574417667875906684571331862907077791420203092569040939871906901501749358719930594501}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $41$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 119589768703493500000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 42 |
| The 42 conjugacy class representatives for $C_{42}$ |
| Character table for $C_{42}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{7})^+\), 6.6.300125.1, 7.7.13841287201.1, 14.14.14967283701606751125078125.1, \(\Q(\zeta_{49})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $42$ | $42$ | R | R | $21^{2}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }^{3}$ | $42$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{14}$ | $42$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{6}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{14}$ | $42$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{6}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }^{3}$ | $42$ | $42$ | $21^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 7 | Data not computed | ||||||