# Oscar code for working with number field 42.42.519767234928222794437622861788597020192717533652199079454480438860528408854528.1 # If you have not already loaded the Oscar package, you should type "using Oscar;" before running the code below. # Some of these functions may take a long time to compile (this depends on the state of your Julia REPL), and/or to execute (this depends on the field). # Define the number field: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^42 - 42*x^40 + 819*x^38 - 9842*x^36 + 81585*x^34 - 494802*x^32 + 2272424*x^30 - 8069425*x^28 + 22428280*x^26 - 49085750*x^24 + 84674891*x^22 - 114729727*x^20 + 121131479*x^18 - 98380632*x^16 + 60329941*x^14 - 27217932*x^12 + 8716708*x^10 - 1885324*x^8 + 256221*x^6 - 19551*x^4 + 686*x^2 - 7) # Defining polynomial: defining_polynomial(K) # Degree over Q: degree(K) # Signature: signature(K) # Discriminant: OK = ring_of_integers(K); discriminant(OK) # Ramified primes: prime_divisors(discriminant((OK))) # Autmorphisms: automorphisms(K) # Integral basis: basis(OK) # Class group: class_group(K) # Unit group: UK, fUK = unit_group(OK) # Unit rank: rank(UK) # Generator for roots of unity: torsion_units_generator(OK) # Fundamental units: [K(fUK(a)) for a in gens(UK)] # Regulator: regulator(K) # Analytic class number formula: # self-contained Oscar code snippet to compute the analytic class number formula Qx, x = PolynomialRing(QQ); K, a = NumberField(x^42 - 42*x^40 + 819*x^38 - 9842*x^36 + 81585*x^34 - 494802*x^32 + 2272424*x^30 - 8069425*x^28 + 22428280*x^26 - 49085750*x^24 + 84674891*x^22 - 114729727*x^20 + 121131479*x^18 - 98380632*x^16 + 60329941*x^14 - 27217932*x^12 + 8716708*x^10 - 1885324*x^8 + 256221*x^6 - 19551*x^4 + 686*x^2 - 7); OK = ring_of_integers(K); DK = discriminant(OK); UK, fUK = unit_group(OK); clK, fclK = class_group(OK); r1,r2 = signature(K); RK = regulator(K); RR = parent(RK); hK = order(clK); wK = torsion_units_order(K); 2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK)))) # Intermediate fields: subfields(K)[2:end-1] # Galois group: G, Gtx = galois_group(K); G, transitive_group_identification(G) # Frobenius cycle types: # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar: p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]