Normalized defining polynomial
\( x^{42} - x^{41} - 67 x^{40} + 62 x^{39} + 1993 x^{38} - 1704 x^{37} - 34847 x^{36} + 27519 x^{35} + 399768 x^{34} - 291838 x^{33} - 3181854 x^{32} + 2151119 x^{31} + 18125561 x^{30} - 11376768 x^{29} - 75199314 x^{28} + 43948028 x^{27} + 229267037 x^{26} - 125109956 x^{25} - 515411960 x^{24} + 263200585 x^{23} + 854114535 x^{22} - 408541162 x^{21} - 1040280967 x^{20} + 465602383 x^{19} + 926307827 x^{18} - 386475878 x^{17} - 597992464 x^{16} + 230741151 x^{15} + 276295754 x^{14} - 97190872 x^{13} - 89602671 x^{12} + 28039534 x^{11} + 19807180 x^{10} - 5297092 x^{9} - 2853616 x^{8} + 611802 x^{7} + 248962 x^{6} - 38836 x^{5} - 11508 x^{4} + 1155 x^{3} + 217 x^{2} - 14 x - 1 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$, $a^{37}$, $a^{38}$, $a^{39}$, $\frac{1}{161587} a^{40} + \frac{14993}{161587} a^{39} - \frac{20872}{161587} a^{38} + \frac{6467}{161587} a^{37} - \frac{78294}{161587} a^{36} + \frac{73150}{161587} a^{35} + \frac{40923}{161587} a^{34} - \frac{53623}{161587} a^{33} + \frac{34818}{161587} a^{32} - \frac{5138}{161587} a^{31} - \frac{20811}{161587} a^{30} - \frac{9494}{161587} a^{29} - \frac{64573}{161587} a^{28} - \frac{17565}{161587} a^{27} + \frac{67548}{161587} a^{26} - \frac{72957}{161587} a^{25} + \frac{64384}{161587} a^{24} + \frac{37918}{161587} a^{23} + \frac{54743}{161587} a^{22} - \frac{24140}{161587} a^{21} - \frac{73110}{161587} a^{20} - \frac{37276}{161587} a^{19} - \frac{68576}{161587} a^{18} + \frac{14181}{161587} a^{17} + \frac{24460}{161587} a^{16} - \frac{22901}{161587} a^{15} - \frac{64373}{161587} a^{14} - \frac{79095}{161587} a^{13} - \frac{1482}{161587} a^{12} - \frac{19861}{161587} a^{11} - \frac{78451}{161587} a^{10} + \frac{57389}{161587} a^{9} + \frac{36447}{161587} a^{8} - \frac{29715}{161587} a^{7} + \frac{50248}{161587} a^{6} - \frac{2427}{161587} a^{5} - \frac{46822}{161587} a^{4} + \frac{24309}{161587} a^{3} - \frac{78848}{161587} a^{2} + \frac{68277}{161587} a + \frac{44969}{161587}$, $\frac{1}{26440770602838375959086217965893686237934016604065386758846139632731499428698372589516698880908151} a^{41} - \frac{63523844410928982431213022042258852950848595439517498150008975664866511810398068473121072171}{26440770602838375959086217965893686237934016604065386758846139632731499428698372589516698880908151} a^{40} - \frac{9409388652117697079862136863846737407839229300376354312552932256362041643381302110027100136117179}{26440770602838375959086217965893686237934016604065386758846139632731499428698372589516698880908151} a^{39} - \frac{8329609683028909868799189971946592649712621800178366219273288135605285545419986669847246862906249}{26440770602838375959086217965893686237934016604065386758846139632731499428698372589516698880908151} a^{38} - \frac{13103569031887411233242263457825791578563146909318718568366280867896707965454226505746506147944279}{26440770602838375959086217965893686237934016604065386758846139632731499428698372589516698880908151} a^{37} - \frac{1405396844920389159480515833181225470730870185224852340440601891905237027621324802010713006024828}{26440770602838375959086217965893686237934016604065386758846139632731499428698372589516698880908151} a^{36} + \frac{5317052274234269202111144527063378700204753720433491978509682743912590280081360815038665515950157}{26440770602838375959086217965893686237934016604065386758846139632731499428698372589516698880908151} a^{35} + \frac{205780738600070835532434053678843981949628702352940265953813150667814510826080635791351597999050}{26440770602838375959086217965893686237934016604065386758846139632731499428698372589516698880908151} a^{34} - \frac{6464132664831052698694288361419417523819459364695680171711481139929098971219720451672387086150142}{26440770602838375959086217965893686237934016604065386758846139632731499428698372589516698880908151} a^{33} + \frac{3385696621423724157726813001705066468201860226681447418595162798011584578356897585034336667280826}{26440770602838375959086217965893686237934016604065386758846139632731499428698372589516698880908151} a^{32} + \frac{5314551020886437468872717351601966356608869029903905857990543242229318394925957853946412119942066}{26440770602838375959086217965893686237934016604065386758846139632731499428698372589516698880908151} a^{31} - \frac{9350706539562107679889160246135122917164846554602926549820116230353893533680245632327975030222921}{26440770602838375959086217965893686237934016604065386758846139632731499428698372589516698880908151} a^{30} - \frac{12089626498535271801624905505829884393324906756244083115689262067505800098963992332475130486762151}{26440770602838375959086217965893686237934016604065386758846139632731499428698372589516698880908151} a^{29} + \frac{4222221395955314615084682994196550659188395219055922310436349224412296105826606721280507402741557}{26440770602838375959086217965893686237934016604065386758846139632731499428698372589516698880908151} a^{28} - \frac{4452473033343320440525489302784499449592886031196909797066870796843135589422030472839742977067537}{26440770602838375959086217965893686237934016604065386758846139632731499428698372589516698880908151} a^{27} - \frac{11138407266752602927866366587084616099935788379165330207613372779570591063433651433557854496563635}{26440770602838375959086217965893686237934016604065386758846139632731499428698372589516698880908151} a^{26} - \frac{2882705386373059151527822612581514707353157699641758584264730309270840822574919245714270059910342}{26440770602838375959086217965893686237934016604065386758846139632731499428698372589516698880908151} a^{25} - \frac{7506536157793489198211255704883703029554161305819946541287531245402016832435661796055825170608846}{26440770602838375959086217965893686237934016604065386758846139632731499428698372589516698880908151} a^{24} - \frac{4052235761174456639935270609129635521034848731440219356449365483871570203016451960592937587930853}{26440770602838375959086217965893686237934016604065386758846139632731499428698372589516698880908151} a^{23} - \frac{9787460313221486811966179523881486022787731260701409036734759035009856199219469509953699620743588}{26440770602838375959086217965893686237934016604065386758846139632731499428698372589516698880908151} a^{22} - \frac{249850186862415922599164049511175686267530462705827933119250284227187287699605722696741428526424}{26440770602838375959086217965893686237934016604065386758846139632731499428698372589516698880908151} a^{21} - \frac{10625887964566455118893346730478288262260585692116371060550295998976524040254229355677698271616899}{26440770602838375959086217965893686237934016604065386758846139632731499428698372589516698880908151} a^{20} + \frac{7688415165586736688660033226784072375747091392284272451317526862018180816680418391494347883836097}{26440770602838375959086217965893686237934016604065386758846139632731499428698372589516698880908151} a^{19} + \frac{8431190433902142236163269269227593573577642445741278007225291477648215126200226126529231222829237}{26440770602838375959086217965893686237934016604065386758846139632731499428698372589516698880908151} a^{18} + \frac{8177736659445694489112521107090765401963133161736682478308371738641747177577013587515525865525173}{26440770602838375959086217965893686237934016604065386758846139632731499428698372589516698880908151} a^{17} - \frac{12026337406178981346908266034377621370337508467197299121703257971608309981021171800005171395964315}{26440770602838375959086217965893686237934016604065386758846139632731499428698372589516698880908151} a^{16} + \frac{1852084775047534739371615612370547930739441212294391272587260325436492593914316394559007855274910}{26440770602838375959086217965893686237934016604065386758846139632731499428698372589516698880908151} a^{15} + \frac{11121220440291383083068100960777190988053773642346910306684707159632403755567337935857093965617746}{26440770602838375959086217965893686237934016604065386758846139632731499428698372589516698880908151} a^{14} + \frac{246624371098978216564288346299553627773761749346886667599000641684934423912528486573976885540997}{26440770602838375959086217965893686237934016604065386758846139632731499428698372589516698880908151} a^{13} + \frac{9515962533521679196482718712416250562572455445058686849278790661593617663342142843445879958409642}{26440770602838375959086217965893686237934016604065386758846139632731499428698372589516698880908151} a^{12} + \frac{4821359618343689651971879291572218042876274659242134247159566416747694011856524128059963407351285}{26440770602838375959086217965893686237934016604065386758846139632731499428698372589516698880908151} a^{11} + \frac{8286020219251350698536710165753835973403195722000700376917309045298224844429934946670390023346777}{26440770602838375959086217965893686237934016604065386758846139632731499428698372589516698880908151} a^{10} - \frac{8462793990987760770530859783121198754466335148908297544404299976223746579897954459202291573171356}{26440770602838375959086217965893686237934016604065386758846139632731499428698372589516698880908151} a^{9} - \frac{9000244859428609843472352960674640088503283537998997593660702614947759764711774397301634676828981}{26440770602838375959086217965893686237934016604065386758846139632731499428698372589516698880908151} a^{8} + \frac{2171563590513233561785136597846704898150037287005587820208214331617078205681979705461600755599294}{26440770602838375959086217965893686237934016604065386758846139632731499428698372589516698880908151} a^{7} - \frac{2828721674566339196234654624843978620702711758511310659783686713455244660176614472785952455400932}{26440770602838375959086217965893686237934016604065386758846139632731499428698372589516698880908151} a^{6} + \frac{11057276046798034276623891262161411486974570613448597380770904242242487349772989906851288388258823}{26440770602838375959086217965893686237934016604065386758846139632731499428698372589516698880908151} a^{5} + \frac{11692092720809740940468258055822021069210454961962187541243896620982850653124719385453655576894276}{26440770602838375959086217965893686237934016604065386758846139632731499428698372589516698880908151} a^{4} + \frac{6428799841265556815660180463283838652380232882431038097111243709886063373553544467687935498515124}{26440770602838375959086217965893686237934016604065386758846139632731499428698372589516698880908151} a^{3} + \frac{12274235086900834744759788222921716512427512887345383194596716557993918383652455100711832083932255}{26440770602838375959086217965893686237934016604065386758846139632731499428698372589516698880908151} a^{2} + \frac{9650707139731862520264073343788792126218517162000604352663950272231085729711310051881270746348981}{26440770602838375959086217965893686237934016604065386758846139632731499428698372589516698880908151} a + \frac{2120438473819317273780823928439315274261603824566554148112979243005739272349844026490428383317827}{26440770602838375959086217965893686237934016604065386758846139632731499428698372589516698880908151}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $41$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1205750664686969300000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 42 |
| The 42 conjugacy class representatives for $C_{42}$ |
| Character table for $C_{42}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{29}) \), \(\Q(\zeta_{7})^+\), 6.6.58557989.1, 7.7.594823321.1, \(\Q(\zeta_{29})^+\), 21.21.142736986105602839685204351151303673689.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $42$ | $42$ | $21^{2}$ | R | $42$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{6}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{7}$ | $42$ | $21^{2}$ | R | $42$ | $42$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{21}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }^{3}$ | $42$ | $21^{2}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{14}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| $29$ | 29.14.13.1 | $x^{14} - 29$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ |
| 29.14.13.1 | $x^{14} - 29$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ | |
| 29.14.13.1 | $x^{14} - 29$ | $14$ | $1$ | $13$ | $C_{14}$ | $[\ ]_{14}$ | |