Normalized defining polynomial
\( x^{42} - 84 x^{40} + 3276 x^{38} - 78736 x^{36} + 1305360 x^{34} - 15833664 x^{32} + 145435136 x^{30} - 1032886400 x^{28} + 5741639680 x^{26} - 25131904000 x^{24} + 86707088384 x^{22} - 234966480896 x^{20} + 496154537984 x^{18} - 805934137344 x^{16} + 988445753344 x^{14} - 891877195776 x^{12} + 571258175488 x^{10} - 247113187328 x^{8} + 67166797824 x^{6} - 10250354688 x^{4} + 719323136 x^{2} - 14680064 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{8} a^{7}$, $\frac{1}{16} a^{8}$, $\frac{1}{16} a^{9}$, $\frac{1}{32} a^{10}$, $\frac{1}{32} a^{11}$, $\frac{1}{64} a^{12}$, $\frac{1}{64} a^{13}$, $\frac{1}{128} a^{14}$, $\frac{1}{128} a^{15}$, $\frac{1}{256} a^{16}$, $\frac{1}{256} a^{17}$, $\frac{1}{512} a^{18}$, $\frac{1}{512} a^{19}$, $\frac{1}{1024} a^{20}$, $\frac{1}{1024} a^{21}$, $\frac{1}{2048} a^{22}$, $\frac{1}{2048} a^{23}$, $\frac{1}{4096} a^{24}$, $\frac{1}{4096} a^{25}$, $\frac{1}{8192} a^{26}$, $\frac{1}{8192} a^{27}$, $\frac{1}{16384} a^{28}$, $\frac{1}{16384} a^{29}$, $\frac{1}{32768} a^{30}$, $\frac{1}{32768} a^{31}$, $\frac{1}{65536} a^{32}$, $\frac{1}{65536} a^{33}$, $\frac{1}{131072} a^{34}$, $\frac{1}{131072} a^{35}$, $\frac{1}{262144} a^{36}$, $\frac{1}{262144} a^{37}$, $\frac{1}{524288} a^{38}$, $\frac{1}{524288} a^{39}$, $\frac{1}{1048576} a^{40}$, $\frac{1}{1048576} a^{41}$
Class group and class number
not computed
Unit group
Rank: | $41$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | not computed | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | not computed | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A cyclic group of order 42 |
The 42 conjugacy class representatives for $C_{42}$ |
Character table for $C_{42}$ is not computed |
Intermediate fields
\(\Q(\sqrt{14}) \), \(\Q(\zeta_{7})^+\), 6.6.8605184.1, 7.7.13841287201.1, 14.14.2812424737865523319657201664.1, \(\Q(\zeta_{49})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | $42$ | $21^{2}$ | R | $21^{2}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{6}$ | $42$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{7}$ | $42$ | ${\href{/LocalNumberField/29.14.0.1}{14} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{14}$ | $42$ | ${\href{/LocalNumberField/41.14.0.1}{14} }^{3}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{6}$ | $21^{2}$ | $42$ | $42$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
2 | Data not computed | ||||||
7 | Data not computed |