Normalized defining polynomial
\( x^{42} - x^{41} - 61 x^{40} + 56 x^{39} + 1654 x^{38} - 1379 x^{37} - 26380 x^{36} + 19735 x^{35} + 276302 x^{34} - 183047 x^{33} - 2012061 x^{32} + 1164081 x^{31} + 10536175 x^{30} - 5248100 x^{29} - 40536685 x^{28} + 17139885 x^{27} + 116229751 x^{26} - 41141876 x^{25} - 250648402 x^{24} + 73243022 x^{23} + 408521488 x^{22} - 97102633 x^{21} - 503598537 x^{20} + 95768202 x^{19} + 467783098 x^{18} - 69790048 x^{17} - 324502952 x^{16} + 37071837 x^{15} + 165565463 x^{14} - 14037193 x^{13} - 60679502 x^{12} + 3661307 x^{11} + 15419833 x^{10} - 625768 x^{9} - 2575782 x^{8} + 66132 x^{7} + 260062 x^{6} - 4477 x^{5} - 13750 x^{4} + 275 x^{3} + 286 x^{2} - 11 x - 1 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$, $a^{37}$, $a^{38}$, $a^{39}$, $a^{40}$, $\frac{1}{24020006024593681350498127947751686309897738477817714828669095279335555750795667229} a^{41} - \frac{391770097095061334001925904115168815491038202071746550490926699126083157813940465}{24020006024593681350498127947751686309897738477817714828669095279335555750795667229} a^{40} - \frac{3128945255897116428079948372984864441738977892499292861645305796975485996330223893}{24020006024593681350498127947751686309897738477817714828669095279335555750795667229} a^{39} + \frac{6356614100105624880161561027763412049275792423781552831197464550897165389384448101}{24020006024593681350498127947751686309897738477817714828669095279335555750795667229} a^{38} + \frac{6756643745296521367932435402910215035448825534085209375341346538653252881556640365}{24020006024593681350498127947751686309897738477817714828669095279335555750795667229} a^{37} - \frac{2558792168307923404044195429488012195611926270598261831613797101778147239849507510}{24020006024593681350498127947751686309897738477817714828669095279335555750795667229} a^{36} - \frac{80468552792210009865557673446151319237728987318806064901937391550187398433367317}{24020006024593681350498127947751686309897738477817714828669095279335555750795667229} a^{35} + \frac{3111100005542695317648106931327051671194548554202026688599497786776616768140819795}{24020006024593681350498127947751686309897738477817714828669095279335555750795667229} a^{34} - \frac{1032808141115945058414579978999054931260454229959903515132911371380990155500027389}{24020006024593681350498127947751686309897738477817714828669095279335555750795667229} a^{33} + \frac{9274555261247020915843621597252734490889245749065488995478446013957217875949308095}{24020006024593681350498127947751686309897738477817714828669095279335555750795667229} a^{32} - \frac{620095183314661628594004298084267552735560655596330360278496866410107307793835519}{24020006024593681350498127947751686309897738477817714828669095279335555750795667229} a^{31} + \frac{11261774264185287800162411434467418476008514977884227027256099311043887729798585714}{24020006024593681350498127947751686309897738477817714828669095279335555750795667229} a^{30} - \frac{8482406484375717049824872877657896258164012783749437205087134687713854620719771499}{24020006024593681350498127947751686309897738477817714828669095279335555750795667229} a^{29} + \frac{8247337386666127281917943545869988324158142750946858320010786073239574380242269969}{24020006024593681350498127947751686309897738477817714828669095279335555750795667229} a^{28} - \frac{786697559571025349016581641308666862878411609510649616833112059930937309167215298}{24020006024593681350498127947751686309897738477817714828669095279335555750795667229} a^{27} + \frac{4658925853692242399359022424780177760419342789603915563840563885777432592408758021}{24020006024593681350498127947751686309897738477817714828669095279335555750795667229} a^{26} + \frac{10328609064079975364772154099442960956079656044171004351821822951197194746281482621}{24020006024593681350498127947751686309897738477817714828669095279335555750795667229} a^{25} - \frac{10845162218980335247332143620186732164335506922143476672541496133255755438097760603}{24020006024593681350498127947751686309897738477817714828669095279335555750795667229} a^{24} + \frac{3573435638909451525748511385407280234973601321286354210387694347834137848712536389}{24020006024593681350498127947751686309897738477817714828669095279335555750795667229} a^{23} - \frac{8407834815773379693813062580068157351171627212760866181487853697366963419063926702}{24020006024593681350498127947751686309897738477817714828669095279335555750795667229} a^{22} + \frac{6776985496375095679717433834131347842510398522354935427289305985226636312565869397}{24020006024593681350498127947751686309897738477817714828669095279335555750795667229} a^{21} - \frac{10854815518371359649838969497819169659829520203120603772048631192117548900912524200}{24020006024593681350498127947751686309897738477817714828669095279335555750795667229} a^{20} + \frac{3469715472051693751300590354532461446084216993167513338308039138823611916646158380}{24020006024593681350498127947751686309897738477817714828669095279335555750795667229} a^{19} - \frac{730437470864976407656958122992092056330587730375042776550396566161376730838345217}{24020006024593681350498127947751686309897738477817714828669095279335555750795667229} a^{18} - \frac{7560174817909395814182544313019816894861066188025535120279556730864561815025962885}{24020006024593681350498127947751686309897738477817714828669095279335555750795667229} a^{17} + \frac{4331218433059007241422730278187924846073174559857058041172532027894236168557510594}{24020006024593681350498127947751686309897738477817714828669095279335555750795667229} a^{16} + \frac{3382892903508950224175976373925141683531815955542462917891675128633059162445649825}{24020006024593681350498127947751686309897738477817714828669095279335555750795667229} a^{15} - \frac{10543101717811755762049744373406127289784322900525366101818480474008233635111493542}{24020006024593681350498127947751686309897738477817714828669095279335555750795667229} a^{14} - \frac{1799683743636941344083884848011948611993631184765029495565479636316332554682463396}{24020006024593681350498127947751686309897738477817714828669095279335555750795667229} a^{13} + \frac{2074199844622163326271459071789795601417885144349737969730542814753442242202507519}{24020006024593681350498127947751686309897738477817714828669095279335555750795667229} a^{12} + \frac{5357662192923225173633935486260037601848351488106824715695887071604514115536933898}{24020006024593681350498127947751686309897738477817714828669095279335555750795667229} a^{11} + \frac{8275872252391908086143406006955553521287369031732034307581928605941340502475248042}{24020006024593681350498127947751686309897738477817714828669095279335555750795667229} a^{10} + \frac{2424651070413887948146684338570405227260318904096559300702726454717320877857695887}{24020006024593681350498127947751686309897738477817714828669095279335555750795667229} a^{9} + \frac{6414543266918718974308186356290432485658585705613981276318293260045589686032926859}{24020006024593681350498127947751686309897738477817714828669095279335555750795667229} a^{8} + \frac{1851023631508889479219361805329696033715357407295115628779149391742115939290099603}{24020006024593681350498127947751686309897738477817714828669095279335555750795667229} a^{7} - \frac{7501864892068266761453739948748745549603981185007378558549339324247611497422345439}{24020006024593681350498127947751686309897738477817714828669095279335555750795667229} a^{6} + \frac{4694057781844476934753396562785264235879591539711366296514447096856132808475731757}{24020006024593681350498127947751686309897738477817714828669095279335555750795667229} a^{5} - \frac{5735740888470205274577281362909650363678858918554442042450857892221622342821288599}{24020006024593681350498127947751686309897738477817714828669095279335555750795667229} a^{4} - \frac{11233749016921078373911841811586522853412611464657566420495191756184007637988191669}{24020006024593681350498127947751686309897738477817714828669095279335555750795667229} a^{3} + \frac{6400621399068060385163391446738117284244551499700461390254724707395767926745960528}{24020006024593681350498127947751686309897738477817714828669095279335555750795667229} a^{2} + \frac{9229185632214565927967214961967383623440065326513906296718858004950522830104272857}{24020006024593681350498127947751686309897738477817714828669095279335555750795667229} a + \frac{6266612218079721778645019467871683937293947928711897681662199014989613163571972441}{24020006024593681350498127947751686309897738477817714828669095279335555750795667229}$
Class group and class number
not computed
Unit group
Rank: | $41$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( -1 \) (order $2$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | not computed | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | not computed | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A cyclic group of order 42 |
The 42 conjugacy class representatives for $C_{42}$ |
Character table for $C_{42}$ is not computed |
Intermediate fields
\(\Q(\sqrt{5}) \), 3.3.1849.1, 6.6.427350125.1, 7.7.6321363049.1, 14.14.3121846156036138781328125.1, \(\Q(\zeta_{43})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }^{3}$ | $42$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{7}$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{6}$ | $42$ | $42$ | $21^{2}$ | $42$ | $21^{2}$ | $21^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{7}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{6}$ | R | ${\href{/LocalNumberField/47.14.0.1}{14} }^{3}$ | $42$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{6}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
5 | Data not computed | ||||||
43 | Data not computed |