# SageMath code for working with number field 42.0.74252462132603256348231837398371002884673933378885582779211491265789772693504.1 # (Note that not all these functions may be available, and some may take a long time to execute.) # Define the number field: x = polygen(QQ); K. = NumberField(x^42 + 42*x^40 + 819*x^38 + 9842*x^36 + 81585*x^34 + 494802*x^32 + 2272424*x^30 + 8069423*x^28 + 22428224*x^26 + 49085050*x^24 + 84669739*x^22 + 114704933*x^20 + 121049551*x^18 + 98190708*x^16 + 60019861*x^14 + 26865216*x^12 + 8444436*x^10 + 1749188*x^8 + 215453*x^6 + 13181*x^4 + 294*x^2 + 1) # Defining polynomial: K.defining_polynomial() # Degree over Q: K.degree() # Signature: K.signature() # Discriminant: K.disc() # Ramified primes: K.disc().support() # Integral basis: K.integral_basis() # Class group: K.class_group().invariants() # Unit group: UK = K.unit_group() # Unit rank: UK.rank() # Generator for roots of unity: UK.torsion_generator() # Fundamental units: UK.fundamental_units() # Regulator: K.regulator() # Galois group: K.galois_group(type='pari') # Frobenius cycle types: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]