Normalized defining polynomial
\( x^{42} + 42 x^{40} + 819 x^{38} + 9842 x^{36} + 81585 x^{34} + 494802 x^{32} + 2272424 x^{30} + 8069423 x^{28} + 22428224 x^{26} + 49085050 x^{24} + 84669739 x^{22} + 114704933 x^{20} + 121049551 x^{18} + 98190708 x^{16} + 60019861 x^{14} + 26865216 x^{12} + 8444436 x^{10} + 1749188 x^{8} + 215453 x^{6} + 13181 x^{4} + 294 x^{2} + 1 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$, $a^{37}$, $a^{38}$, $a^{39}$, $a^{40}$, $a^{41}$
Class group and class number
$C_{1923461}$, which has order $1923461$ (assuming GRH)
Unit group
Rank: | $20$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( a^{35} + 35 a^{33} + 560 a^{31} + 5425 a^{29} + 35525 a^{27} + 166257 a^{25} + 573300 a^{23} + 1480049 a^{21} + 2877854 a^{19} + 4205936 a^{17} + 4575312 a^{15} + 3637270 a^{13} + 2051777 a^{11} + 784343 a^{9} + 188653 a^{7} + 25060 a^{5} + 1414 a^{3} + 21 a \) (order $4$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 1776855897760068.5 \) (assuming GRH) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A cyclic group of order 42 |
The 42 conjugacy class representatives for $C_{42}$ |
Character table for $C_{42}$ is not computed |
Intermediate fields
\(\Q(\sqrt{-1}) \), \(\Q(\zeta_{7})^+\), 6.0.153664.1, 7.7.13841287201.1, 14.0.3138866894939200133545984.1, \(\Q(\zeta_{49})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | $42$ | $21^{2}$ | R | $42$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{6}$ | $21^{2}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{7}$ | $42$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{6}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{7}$ | $21^{2}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{6}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }^{3}$ | $42$ | $21^{2}$ | $42$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
2 | Data not computed | ||||||
7 | Data not computed |