\\ Pari/GP code for working with number field 42.0.50695215285987529776146634789549734025587976443244441326301426824919673222871754267.1 \\ Some of these functions may take a long time to execute (this depends on the field). \\ Define the number field: K = bnfinit(y^42 - 16*y^39 + 1066*y^36 + 13384*y^33 + 639480*y^30 + 581064*y^27 + 10535858*y^24 - 25402305*y^21 + 171805922*y^18 - 184669454*y^15 + 198189968*y^12 + 3751640*y^9 + 57337*y^6 + 267*y^3 + 1, 1) \\ Defining polynomial: K.pol \\ Degree over Q: poldegree(K.pol) \\ Signature: K.sign \\ Discriminant: K.disc \\ Ramified primes: factor(abs(K.disc))[,1]~ \\ Integral basis: K.zk \\ Class group: K.clgp \\ Unit rank: K.fu \\ Generator for roots of unity: K.tu[2] \\ Fundamental units: K.fu \\ Regulator: K.reg \\ Analytic class number formula: # self-contained Pari/GP code snippet to compute the analytic class number formula K = bnfinit(x^42 - 16*x^39 + 1066*x^36 + 13384*x^33 + 639480*x^30 + 581064*x^27 + 10535858*x^24 - 25402305*x^21 + 171805922*x^18 - 184669454*x^15 + 198189968*x^12 + 3751640*x^9 + 57337*x^6 + 267*x^3 + 1, 1); [polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))] \\ Intermediate fields: L = nfsubfields(K); L[2..length(b)] \\ Galois group: polgalois(K.pol) \\ Frobenius cycle types: \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari: p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])