Normalized defining polynomial
\( x^{42} - x^{41} + 21 x^{40} - 18 x^{39} + 248 x^{38} - 191 x^{37} + 1996 x^{36} - 1375 x^{35} + 12088 x^{34} - 7495 x^{33} + 57373 x^{32} - 31825 x^{31} + 219409 x^{30} - 108700 x^{29} + 684645 x^{28} - 300153 x^{27} + 1757705 x^{26} - 677756 x^{25} + 3715466 x^{24} - 1242500 x^{23} + 6455978 x^{22} - 1853597 x^{21} + 9148985 x^{20} - 2205194 x^{19} + 10469894 x^{18} - 2090336 x^{17} + 9505112 x^{16} - 1507895 x^{15} + 6709547 x^{14} - 839645 x^{13} + 3559478 x^{12} - 314951 x^{11} + 1368367 x^{10} - 93808 x^{9} + 355278 x^{8} - 10362 x^{7} + 58036 x^{6} - 2497 x^{5} + 4950 x^{4} + 165 x^{3} + 176 x^{2} - 11 x + 1 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$, $a^{37}$, $a^{38}$, $\frac{1}{7} a^{39} + \frac{3}{7} a^{38} - \frac{3}{7} a^{37} - \frac{2}{7} a^{36} - \frac{2}{7} a^{34} + \frac{1}{7} a^{33} + \frac{3}{7} a^{32} - \frac{3}{7} a^{31} - \frac{3}{7} a^{30} + \frac{1}{7} a^{29} + \frac{2}{7} a^{28} - \frac{1}{7} a^{27} + \frac{3}{7} a^{25} + \frac{2}{7} a^{24} + \frac{3}{7} a^{23} + \frac{3}{7} a^{22} - \frac{1}{7} a^{20} + \frac{2}{7} a^{19} - \frac{2}{7} a^{18} + \frac{3}{7} a^{16} + \frac{1}{7} a^{14} + \frac{2}{7} a^{12} + \frac{2}{7} a^{11} - \frac{3}{7} a^{10} - \frac{2}{7} a^{9} + \frac{1}{7} a^{8} - \frac{3}{7} a^{7} + \frac{1}{7} a^{6} + \frac{3}{7} a^{5} - \frac{1}{7} a^{3} + \frac{2}{7} a + \frac{2}{7}$, $\frac{1}{7} a^{40} + \frac{2}{7} a^{38} - \frac{1}{7} a^{36} - \frac{2}{7} a^{35} + \frac{2}{7} a^{32} - \frac{1}{7} a^{31} + \frac{3}{7} a^{30} - \frac{1}{7} a^{29} + \frac{3}{7} a^{27} + \frac{3}{7} a^{26} - \frac{3}{7} a^{24} + \frac{1}{7} a^{23} - \frac{2}{7} a^{22} - \frac{1}{7} a^{21} - \frac{2}{7} a^{20} - \frac{1}{7} a^{19} - \frac{1}{7} a^{18} + \frac{3}{7} a^{17} - \frac{2}{7} a^{16} + \frac{1}{7} a^{15} - \frac{3}{7} a^{14} + \frac{2}{7} a^{13} + \frac{3}{7} a^{12} - \frac{2}{7} a^{11} + \frac{1}{7} a^{8} + \frac{3}{7} a^{7} - \frac{2}{7} a^{5} - \frac{1}{7} a^{4} + \frac{3}{7} a^{3} + \frac{2}{7} a^{2} + \frac{3}{7} a + \frac{1}{7}$, $\frac{1}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{41} + \frac{111147585452516690336004128325854480465575243576599055405945215394587619708825767103897121277}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{40} - \frac{207513935396439019960761885976717108244825643708916750352287426721930450437617192347937421228}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{39} - \frac{1710714869679526733813479015933100973633449714648478822101466909998271686355473809915689213453}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{38} + \frac{273176726555171996410475955058241598386356855704005003234372885871600739398739992480799587539}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{37} - \frac{3121349090971089348495029095759861919697021672786112521774759875238141726790001933266611986743}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{36} - \frac{217947497372244428190378137171911679671094129156863503009407865365339593734763015347669201249}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{35} - \frac{2535385980801624062524502308406696810834371284087606114644871800561141982590757626613001087127}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{34} + \frac{2016861228368882029448511829477657199463150737360318947866824759005255339523772722587687543318}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{33} - \frac{448353781257388518065970597575850345585857791173073961855016646430263151609137328215965739405}{1039303173611034910827325344230253334624903012305619963629698492955647557570270536914668133893} a^{32} + \frac{3389197316804335101839533913119328460838466812367026443269987585479097640417517066620683624137}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{31} - \frac{2663298935328437105418473543425635591831082087381129729247855326094558781429087676376779019251}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{30} + \frac{289746674552529509174902972893066370497717540951366852115273223918426120098649274889147317878}{1039303173611034910827325344230253334624903012305619963629698492955647557570270536914668133893} a^{29} - \frac{2418065519390828994910272906524788359353823761444174440021405047795346398227566122071458628219}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{28} - \frac{3089973100919620827050182739644206115983321752153895775197244129521537681546905420711946936103}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{27} + \frac{3038401029448077911679114807565094245065382637549830879319944648148353813578804460666088756758}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{26} + \frac{3501954765023054758838892405898668552957284597930357298794199355188112752075742533555713331445}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{25} + \frac{1069576273412495777992004263685219684246520885783134022460072127732900457000208022159251170385}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{24} + \frac{1072152932219915660951049544722658889241318766283321037808086781240866701114667406901631847989}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{23} + \frac{2154213518621243807860041577539427510698374787553339082681348263596732053366775970343948496459}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{22} - \frac{1418638936925803967374758883981375771890394107585658875586205906809707302048067148612298421304}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{21} - \frac{1900089869430304309213364030419527268258717286515516793219867115532684581179145362572863116599}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{20} - \frac{1679819317602080549812437753786373156260051319263382764893690555015947384309402558140620808534}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{19} - \frac{1689944275808186962717677419038432273100500437577879396135933393263983788349919340134697205525}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{18} - \frac{180668118428539135925818779478127723920607566450163447595022297247183356155505663905172529248}{1039303173611034910827325344230253334624903012305619963629698492955647557570270536914668133893} a^{17} - \frac{638069711450512572878712488461183375889136063572945698199801630218983365367245945198827019136}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{16} - \frac{156534626759678106129178778871119110025932353847204443572960812312033829297193723521928587}{1039303173611034910827325344230253334624903012305619963629698492955647557570270536914668133893} a^{15} - \frac{2161120661988512479022076848219951972136556260383249281924781446518851478103213312643178948767}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{14} + \frac{2448813501053261115028190282870285405517140999208513185750456149896274919153061313111876449863}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{13} - \frac{201201361216720169194935779501195918691315760118649772631195115003198879148582319566872858739}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{12} - \frac{167414528810546346030081230861929908186045548923838334659282864051785617409026443566389153498}{1039303173611034910827325344230253334624903012305619963629698492955647557570270536914668133893} a^{11} - \frac{3203467797705432950037418593324241714159751696589040691212799023280678971034851709641841760364}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{10} - \frac{295269578967345909976226230314508473267027185154568754626583957640837601107341104346232562482}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{9} + \frac{37959347756491249311386153777383979738475509437076716084036909791122997855687332906564875064}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{8} + \frac{144407176638651738048663177983502587057179707693757863506058517882180168740830897242519048522}{1039303173611034910827325344230253334624903012305619963629698492955647557570270536914668133893} a^{7} + \frac{1483713318402997262016975388935006983609501200452836877488004943062003287101272881010181954380}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{6} + \frac{3045105998232723334910567443195251233887684371930101046740111543956844604933917776452150453622}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{5} + \frac{319076822845341356131171445066340556790354224078937558322507696318779351956023499723678000212}{1039303173611034910827325344230253334624903012305619963629698492955647557570270536914668133893} a^{4} - \frac{1963623958815482163934226390163250922867794923804482701408386786154106561778732388196735822481}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{3} - \frac{210383106899177916783097666650999289733690053071491815091011483799187124413026392579086801571}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{2} - \frac{180570288086265541850095434947724873044915594298273498211506470530812811933899755725602954187}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a + \frac{1760312626958552620763679762675612149367805507264083742693663503866401892464623011612297555505}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251}$
Class group and class number
$C_{179249}$, which has order $179249$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{597846318319878128399333183551408849018329181957960735727361597582815770032152124649312795518}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{41} + \frac{577795988981124824640471826537711605492341248966838615487646856364007152149949840905813563508}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{40} - \frac{12523178537587947516812830502156715084357390482079938695944660334516818962634935185634908627491}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{39} + \frac{10327789905766012198757042507499584327178405376317620070835925391776762234727449171362399773411}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{38} - \frac{147662872213227124264512137988581527124844737533294717015848649903755231880842002018632627819444}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{37} + \frac{108991870768184441507852223705156087438749259315575733158340341230283701685815424399943288185689}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{36} - \frac{1186617636690075064248609661172441085124190688531330113364009509692405104351806095589232933975246}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{35} + \frac{111375102805111616905501854631029260863277836214372108534324230333680895679820156912350930044046}{1039303173611034910827325344230253334624903012305619963629698492955647557570270536914668133893} a^{34} - \frac{7176276574924287053599812271284023196147464905146680760728541314953353872536610423679161082439124}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{33} + \frac{4221160879150901804646939813712136497379936687075009069903013512663615416720597701029972823016169}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{32} - \frac{34011511477418845403448077207522982243843768505185106158426861648707904197398150069983905316422735}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{31} + \frac{17781023674052835310520759338772705687574979925532505474480357060781963095965477562536727396195997}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{30} - \frac{129879677482630348884877884041290230672321156455466119130088411633310488526376202928171820221677435}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{29} + \frac{60179736325889069051835690647746638988871685176993040586158996964936122317887829079136553404611482}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{28} - \frac{57805297716058912675009587970845313970740150102783420211008159471640306618917933158412631381711436}{1039303173611034910827325344230253334624903012305619963629698492955647557570270536914668133893} a^{27} + \frac{164315467651037501807610969364678582841695744738756105417698221112849118163441604031837209901423383}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{26} - \frac{1037065571124766098947732482937786314856872959848482205874011740149350317099192420766903489005127410}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{25} + \frac{366035819258047172876028846879670410850154937281081904461850797769317853456800003178014538578917612}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{24} - \frac{2187889592177705809755854375627617364023773517612498968661432487139276629163602077263084715847620402}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{23} + \frac{659369252784439098192659841567017841912557477168697501627321757118361869969171455976668428224177962}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{22} - \frac{3793196106235633165010830374725964509819479529312004832084433996086105294006468547959656676848141619}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{21} + \frac{962024569509024513988754414666089001557122869243842080863347540602980738195955280856329633989176110}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{20} - \frac{765839771990510755476089042067251560518286807422617016693079298757635162874424850978033121272501719}{1039303173611034910827325344230253334624903012305619963629698492955647557570270536914668133893} a^{19} + \frac{1109500222460910975382825898067345583300935046258150089650260641538188676003880854101715035688698700}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{18} - \frac{6114702256386711348859284744648636257942738380067592399321399699142231327717363855689927891148129861}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{17} + \frac{1008690123449986259182745059521354430522820886884677060188385532419647924503107571476678285925801845}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{16} - \frac{5527253785388819655300637982495123128662180903789001660199537289907339815704733599169591189090071752}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{15} + \frac{680390699414122176113404773185076021875962600978208565777215128256115672581277393584285885962611535}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{14} - \frac{3879891649855407417856547542274509226366749316361384369483144455003239758556154500009228667010137815}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{13} + \frac{344292991904484865112204774986533908013760816670585986735283535579499305536011253394908546356274047}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{12} - \frac{2041502705469106088064360544147765855494142904361565955059986714144877106013119449820945120753504619}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{11} + \frac{14735190748452567555255661542726614853539489295614533436726856395202867091834533097114007606974213}{1039303173611034910827325344230253334624903012305619963629698492955647557570270536914668133893} a^{10} - \frac{776039479458341761024115479694784652012709720856973163900366310208593094183999524083856481030081622}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{9} + \frac{22843770188397564722382340739256632224553285769652651612711625117454068806568482849212928259510045}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{8} - \frac{197471240484244062769587273428737177691653362276355366307396018300114334383824412818805983219246281}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{7} - \frac{2894967940651568123738247656452587131682002710003036109813463424300992072517509281661900053153640}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{6} - \frac{31360340777808760321179670174132844208734594973190295847305277271760256007499131289132288512760277}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{5} - \frac{19624106787617821707454577878869029363926440443349242484213444581441251520676985646440768640197}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{4} - \frac{2464881776253411541764160269476787438853051259322567633434722858421402161395445445634484092633078}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{3} - \frac{286967956216437266294491942009933809590950587838751496633549584192917925515681860216927387656964}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a^{2} - \frac{79508453895139319054498562092581723131050820465764982371314038394671956618707060343264250792079}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} a + \frac{4849027870496966572840092730071372039449466830505132381981584709487192027667730038108879054017}{7275122215277244375791277409611773342374321086139339745407889450689532902991893758402676937251} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2748021948787771.5 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 42 |
| The 42 conjugacy class representatives for $C_{42}$ |
| Character table for $C_{42}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 3.3.1849.1, 6.0.92307627.1, 7.7.6321363049.1, 14.0.87391712553613254588987.1, \(\Q(\zeta_{43})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }^{3}$ | R | $42$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{14}$ | ${\href{/LocalNumberField/11.14.0.1}{14} }^{3}$ | $21^{2}$ | $42$ | $21^{2}$ | $42$ | $42$ | $21^{2}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{14}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }^{3}$ | R | ${\href{/LocalNumberField/47.14.0.1}{14} }^{3}$ | $42$ | ${\href{/LocalNumberField/59.14.0.1}{14} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 43 | Data not computed | ||||||