Properties

Label 42.0.167...503.1
Degree $42$
Signature $[0, 21]$
Discriminant $-1.678\times 10^{82}$
Root discriminant \(90.73\)
Ramified primes $7,29$
Class number not computed
Class group not computed
Galois group $C_{42}$ (as 42T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^42 - x^41 + 13*x^40 - 18*x^39 + 139*x^38 - 250*x^37 + 1451*x^36 + 321*x^35 + 11819*x^34 + 7069*x^33 + 101147*x^32 + 34723*x^31 + 906407*x^30 - 143662*x^29 + 2718926*x^28 - 434521*x^27 + 7093735*x^26 - 1731307*x^25 + 17818760*x^24 - 17036040*x^23 + 50814721*x^22 - 44435389*x^21 + 124550915*x^20 - 97201554*x^19 + 258557330*x^18 - 191477895*x^17 + 222793332*x^16 - 183429282*x^15 + 205234539*x^14 - 104619060*x^13 + 150123312*x^12 + 66144604*x^11 + 21062459*x^10 + 5929237*x^9 + 1586736*x^8 + 394344*x^7 + 106707*x^6 + 17635*x^5 + 2858*x^4 + 449*x^3 + 67*x^2 + 9*x + 1)
 
gp: K = bnfinit(y^42 - y^41 + 13*y^40 - 18*y^39 + 139*y^38 - 250*y^37 + 1451*y^36 + 321*y^35 + 11819*y^34 + 7069*y^33 + 101147*y^32 + 34723*y^31 + 906407*y^30 - 143662*y^29 + 2718926*y^28 - 434521*y^27 + 7093735*y^26 - 1731307*y^25 + 17818760*y^24 - 17036040*y^23 + 50814721*y^22 - 44435389*y^21 + 124550915*y^20 - 97201554*y^19 + 258557330*y^18 - 191477895*y^17 + 222793332*y^16 - 183429282*y^15 + 205234539*y^14 - 104619060*y^13 + 150123312*y^12 + 66144604*y^11 + 21062459*y^10 + 5929237*y^9 + 1586736*y^8 + 394344*y^7 + 106707*y^6 + 17635*y^5 + 2858*y^4 + 449*y^3 + 67*y^2 + 9*y + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^42 - x^41 + 13*x^40 - 18*x^39 + 139*x^38 - 250*x^37 + 1451*x^36 + 321*x^35 + 11819*x^34 + 7069*x^33 + 101147*x^32 + 34723*x^31 + 906407*x^30 - 143662*x^29 + 2718926*x^28 - 434521*x^27 + 7093735*x^26 - 1731307*x^25 + 17818760*x^24 - 17036040*x^23 + 50814721*x^22 - 44435389*x^21 + 124550915*x^20 - 97201554*x^19 + 258557330*x^18 - 191477895*x^17 + 222793332*x^16 - 183429282*x^15 + 205234539*x^14 - 104619060*x^13 + 150123312*x^12 + 66144604*x^11 + 21062459*x^10 + 5929237*x^9 + 1586736*x^8 + 394344*x^7 + 106707*x^6 + 17635*x^5 + 2858*x^4 + 449*x^3 + 67*x^2 + 9*x + 1);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^42 - x^41 + 13*x^40 - 18*x^39 + 139*x^38 - 250*x^37 + 1451*x^36 + 321*x^35 + 11819*x^34 + 7069*x^33 + 101147*x^32 + 34723*x^31 + 906407*x^30 - 143662*x^29 + 2718926*x^28 - 434521*x^27 + 7093735*x^26 - 1731307*x^25 + 17818760*x^24 - 17036040*x^23 + 50814721*x^22 - 44435389*x^21 + 124550915*x^20 - 97201554*x^19 + 258557330*x^18 - 191477895*x^17 + 222793332*x^16 - 183429282*x^15 + 205234539*x^14 - 104619060*x^13 + 150123312*x^12 + 66144604*x^11 + 21062459*x^10 + 5929237*x^9 + 1586736*x^8 + 394344*x^7 + 106707*x^6 + 17635*x^5 + 2858*x^4 + 449*x^3 + 67*x^2 + 9*x + 1)
 

\( x^{42} - x^{41} + 13 x^{40} - 18 x^{39} + 139 x^{38} - 250 x^{37} + 1451 x^{36} + 321 x^{35} + 11819 x^{34} + \cdots + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $42$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 21]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(-167\!\cdots\!503\) \(\medspace = -\,7^{35}\cdot 29^{36}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(90.73\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $7^{5/6}29^{6/7}\approx 90.72612557219027$
Ramified primes:   \(7\), \(29\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q(\sqrt{-7}) \)
$\card{ \Gal(K/\Q) }$:  $42$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(203=7\cdot 29\)
Dirichlet character group:    $\lbrace$$\chi_{203}(1,·)$, $\chi_{203}(132,·)$, $\chi_{203}(136,·)$, $\chi_{203}(139,·)$, $\chi_{203}(141,·)$, $\chi_{203}(16,·)$, $\chi_{203}(152,·)$, $\chi_{203}(146,·)$, $\chi_{203}(20,·)$, $\chi_{203}(23,·)$, $\chi_{203}(24,·)$, $\chi_{203}(25,·)$, $\chi_{203}(30,·)$, $\chi_{203}(36,·)$, $\chi_{203}(165,·)$, $\chi_{203}(169,·)$, $\chi_{203}(170,·)$, $\chi_{203}(45,·)$, $\chi_{203}(52,·)$, $\chi_{203}(53,·)$, $\chi_{203}(54,·)$, $\chi_{203}(59,·)$, $\chi_{203}(190,·)$, $\chi_{203}(181,·)$, $\chi_{203}(65,·)$, $\chi_{203}(194,·)$, $\chi_{203}(197,·)$, $\chi_{203}(198,·)$, $\chi_{203}(199,·)$, $\chi_{203}(74,·)$, $\chi_{203}(78,·)$, $\chi_{203}(81,·)$, $\chi_{203}(82,·)$, $\chi_{203}(83,·)$, $\chi_{203}(88,·)$, $\chi_{203}(94,·)$, $\chi_{203}(103,·)$, $\chi_{203}(107,·)$, $\chi_{203}(110,·)$, $\chi_{203}(111,·)$, $\chi_{203}(117,·)$, $\chi_{203}(123,·)$$\rbrace$
This is a CM field.
Reflex fields:  unavailable$^{1048576}$

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $\frac{1}{17}a^{36}+\frac{2}{17}a^{35}-\frac{7}{17}a^{34}+\frac{4}{17}a^{33}-\frac{3}{17}a^{31}+\frac{4}{17}a^{30}+\frac{5}{17}a^{29}-\frac{7}{17}a^{28}+\frac{1}{17}a^{27}-\frac{5}{17}a^{26}-\frac{7}{17}a^{24}-\frac{2}{17}a^{23}+\frac{8}{17}a^{22}-\frac{1}{17}a^{21}-\frac{5}{17}a^{20}+\frac{4}{17}a^{19}-\frac{7}{17}a^{18}-\frac{7}{17}a^{17}-\frac{8}{17}a^{16}+\frac{2}{17}a^{15}-\frac{3}{17}a^{14}-\frac{5}{17}a^{12}+\frac{1}{17}a^{11}-\frac{2}{17}a^{10}-\frac{4}{17}a^{9}+\frac{6}{17}a^{8}+\frac{7}{17}a^{7}+\frac{8}{17}a^{5}-\frac{5}{17}a^{4}+\frac{8}{17}a^{3}-\frac{1}{17}a^{2}+\frac{1}{17}a+\frac{8}{17}$, $\frac{1}{11\!\cdots\!51}a^{37}-\frac{89\!\cdots\!50}{11\!\cdots\!51}a^{36}+\frac{16\!\cdots\!28}{11\!\cdots\!51}a^{35}-\frac{17\!\cdots\!21}{11\!\cdots\!51}a^{34}-\frac{24\!\cdots\!23}{11\!\cdots\!51}a^{33}+\frac{50\!\cdots\!04}{11\!\cdots\!51}a^{32}+\frac{22\!\cdots\!06}{11\!\cdots\!51}a^{31}-\frac{29\!\cdots\!65}{11\!\cdots\!51}a^{30}-\frac{57\!\cdots\!07}{11\!\cdots\!51}a^{29}+\frac{37\!\cdots\!50}{11\!\cdots\!51}a^{28}-\frac{11\!\cdots\!28}{11\!\cdots\!51}a^{27}+\frac{17\!\cdots\!15}{11\!\cdots\!51}a^{26}-\frac{50\!\cdots\!65}{11\!\cdots\!51}a^{25}-\frac{15\!\cdots\!91}{11\!\cdots\!51}a^{24}-\frac{57\!\cdots\!08}{11\!\cdots\!51}a^{23}+\frac{22\!\cdots\!74}{11\!\cdots\!51}a^{22}+\frac{56\!\cdots\!66}{11\!\cdots\!51}a^{21}+\frac{46\!\cdots\!28}{11\!\cdots\!51}a^{20}+\frac{45\!\cdots\!62}{11\!\cdots\!51}a^{19}-\frac{47\!\cdots\!37}{11\!\cdots\!51}a^{18}+\frac{33\!\cdots\!75}{11\!\cdots\!51}a^{17}+\frac{31\!\cdots\!83}{11\!\cdots\!51}a^{16}+\frac{10\!\cdots\!69}{68\!\cdots\!03}a^{15}-\frac{20\!\cdots\!15}{11\!\cdots\!51}a^{14}+\frac{31\!\cdots\!67}{11\!\cdots\!51}a^{13}+\frac{19\!\cdots\!05}{11\!\cdots\!51}a^{12}+\frac{27\!\cdots\!53}{11\!\cdots\!51}a^{11}-\frac{20\!\cdots\!09}{11\!\cdots\!51}a^{10}-\frac{14\!\cdots\!90}{68\!\cdots\!03}a^{9}+\frac{41\!\cdots\!70}{11\!\cdots\!51}a^{8}+\frac{35\!\cdots\!71}{11\!\cdots\!51}a^{7}-\frac{46\!\cdots\!59}{11\!\cdots\!51}a^{6}-\frac{37\!\cdots\!28}{11\!\cdots\!51}a^{5}-\frac{28\!\cdots\!96}{11\!\cdots\!51}a^{4}+\frac{43\!\cdots\!40}{11\!\cdots\!51}a^{3}+\frac{29\!\cdots\!36}{11\!\cdots\!51}a^{2}-\frac{46\!\cdots\!60}{11\!\cdots\!51}a+\frac{47\!\cdots\!26}{11\!\cdots\!51}$, $\frac{1}{11\!\cdots\!51}a^{38}-\frac{49\!\cdots\!95}{11\!\cdots\!51}a^{36}-\frac{36\!\cdots\!39}{11\!\cdots\!51}a^{35}+\frac{30\!\cdots\!71}{11\!\cdots\!51}a^{34}-\frac{98\!\cdots\!14}{11\!\cdots\!51}a^{33}+\frac{19\!\cdots\!11}{11\!\cdots\!51}a^{32}-\frac{47\!\cdots\!56}{11\!\cdots\!51}a^{31}-\frac{17\!\cdots\!41}{11\!\cdots\!51}a^{30}+\frac{57\!\cdots\!28}{11\!\cdots\!51}a^{29}+\frac{30\!\cdots\!69}{11\!\cdots\!51}a^{28}+\frac{58\!\cdots\!85}{11\!\cdots\!51}a^{27}-\frac{48\!\cdots\!34}{11\!\cdots\!51}a^{26}-\frac{18\!\cdots\!31}{11\!\cdots\!51}a^{25}-\frac{18\!\cdots\!72}{11\!\cdots\!51}a^{24}-\frac{48\!\cdots\!93}{11\!\cdots\!51}a^{23}-\frac{23\!\cdots\!40}{11\!\cdots\!51}a^{22}+\frac{56\!\cdots\!51}{11\!\cdots\!51}a^{21}-\frac{36\!\cdots\!66}{11\!\cdots\!51}a^{20}+\frac{44\!\cdots\!00}{11\!\cdots\!51}a^{19}-\frac{39\!\cdots\!91}{11\!\cdots\!51}a^{18}+\frac{54\!\cdots\!92}{11\!\cdots\!51}a^{17}-\frac{18\!\cdots\!82}{11\!\cdots\!51}a^{16}-\frac{55\!\cdots\!44}{11\!\cdots\!51}a^{15}+\frac{18\!\cdots\!64}{68\!\cdots\!03}a^{14}+\frac{44\!\cdots\!86}{11\!\cdots\!51}a^{13}-\frac{74\!\cdots\!43}{11\!\cdots\!51}a^{12}-\frac{49\!\cdots\!87}{11\!\cdots\!51}a^{11}+\frac{34\!\cdots\!85}{11\!\cdots\!51}a^{10}+\frac{46\!\cdots\!30}{11\!\cdots\!51}a^{9}+\frac{50\!\cdots\!58}{11\!\cdots\!51}a^{8}-\frac{27\!\cdots\!19}{11\!\cdots\!51}a^{7}-\frac{46\!\cdots\!65}{11\!\cdots\!51}a^{6}+\frac{47\!\cdots\!42}{11\!\cdots\!51}a^{5}-\frac{17\!\cdots\!80}{11\!\cdots\!51}a^{4}-\frac{19\!\cdots\!64}{11\!\cdots\!51}a^{3}-\frac{47\!\cdots\!73}{11\!\cdots\!51}a^{2}+\frac{26\!\cdots\!31}{11\!\cdots\!51}a+\frac{32\!\cdots\!06}{11\!\cdots\!51}$, $\frac{1}{11\!\cdots\!51}a^{39}+\frac{25\!\cdots\!82}{11\!\cdots\!51}a^{36}+\frac{36\!\cdots\!77}{11\!\cdots\!51}a^{35}-\frac{56\!\cdots\!07}{11\!\cdots\!51}a^{34}-\frac{16\!\cdots\!90}{11\!\cdots\!51}a^{33}+\frac{43\!\cdots\!12}{11\!\cdots\!51}a^{32}+\frac{39\!\cdots\!80}{11\!\cdots\!51}a^{31}-\frac{13\!\cdots\!37}{11\!\cdots\!51}a^{30}-\frac{41\!\cdots\!83}{11\!\cdots\!51}a^{29}+\frac{52\!\cdots\!58}{11\!\cdots\!51}a^{28}+\frac{22\!\cdots\!88}{11\!\cdots\!51}a^{27}-\frac{33\!\cdots\!63}{11\!\cdots\!51}a^{26}-\frac{17\!\cdots\!06}{11\!\cdots\!51}a^{25}+\frac{30\!\cdots\!87}{11\!\cdots\!51}a^{24}-\frac{36\!\cdots\!36}{11\!\cdots\!51}a^{23}-\frac{44\!\cdots\!19}{11\!\cdots\!51}a^{22}+\frac{20\!\cdots\!33}{11\!\cdots\!51}a^{21}+\frac{28\!\cdots\!43}{11\!\cdots\!51}a^{20}+\frac{43\!\cdots\!74}{11\!\cdots\!51}a^{19}+\frac{33\!\cdots\!15}{11\!\cdots\!51}a^{18}-\frac{28\!\cdots\!17}{11\!\cdots\!51}a^{17}+\frac{57\!\cdots\!63}{11\!\cdots\!51}a^{16}+\frac{29\!\cdots\!12}{11\!\cdots\!51}a^{15}+\frac{12\!\cdots\!03}{11\!\cdots\!51}a^{14}+\frac{34\!\cdots\!59}{11\!\cdots\!51}a^{13}-\frac{46\!\cdots\!49}{11\!\cdots\!51}a^{12}-\frac{37\!\cdots\!57}{11\!\cdots\!51}a^{11}+\frac{38\!\cdots\!08}{11\!\cdots\!51}a^{10}+\frac{16\!\cdots\!74}{68\!\cdots\!03}a^{9}-\frac{41\!\cdots\!88}{11\!\cdots\!51}a^{8}-\frac{46\!\cdots\!50}{11\!\cdots\!51}a^{7}+\frac{26\!\cdots\!35}{11\!\cdots\!51}a^{6}-\frac{39\!\cdots\!80}{11\!\cdots\!51}a^{5}-\frac{49\!\cdots\!69}{11\!\cdots\!51}a^{4}+\frac{53\!\cdots\!45}{11\!\cdots\!51}a^{3}+\frac{15\!\cdots\!23}{11\!\cdots\!51}a^{2}-\frac{49\!\cdots\!67}{11\!\cdots\!51}a-\frac{32\!\cdots\!78}{11\!\cdots\!51}$, $\frac{1}{11\!\cdots\!51}a^{40}-\frac{60\!\cdots\!90}{11\!\cdots\!51}a^{36}-\frac{27\!\cdots\!62}{11\!\cdots\!51}a^{35}-\frac{45\!\cdots\!09}{11\!\cdots\!51}a^{34}-\frac{30\!\cdots\!51}{11\!\cdots\!51}a^{33}-\frac{23\!\cdots\!56}{11\!\cdots\!51}a^{32}+\frac{19\!\cdots\!50}{68\!\cdots\!03}a^{31}-\frac{38\!\cdots\!21}{11\!\cdots\!51}a^{30}+\frac{17\!\cdots\!87}{11\!\cdots\!51}a^{29}+\frac{29\!\cdots\!46}{11\!\cdots\!51}a^{28}+\frac{13\!\cdots\!95}{11\!\cdots\!51}a^{27}+\frac{20\!\cdots\!75}{68\!\cdots\!03}a^{26}+\frac{43\!\cdots\!72}{11\!\cdots\!51}a^{25}+\frac{11\!\cdots\!39}{11\!\cdots\!51}a^{24}-\frac{51\!\cdots\!14}{11\!\cdots\!51}a^{23}-\frac{79\!\cdots\!27}{11\!\cdots\!51}a^{22}-\frac{34\!\cdots\!68}{11\!\cdots\!51}a^{21}+\frac{13\!\cdots\!85}{11\!\cdots\!51}a^{20}-\frac{25\!\cdots\!97}{11\!\cdots\!51}a^{19}-\frac{24\!\cdots\!52}{11\!\cdots\!51}a^{18}+\frac{33\!\cdots\!39}{11\!\cdots\!51}a^{17}-\frac{37\!\cdots\!36}{11\!\cdots\!51}a^{16}-\frac{49\!\cdots\!57}{11\!\cdots\!51}a^{15}-\frac{22\!\cdots\!83}{11\!\cdots\!51}a^{14}+\frac{10\!\cdots\!92}{11\!\cdots\!51}a^{13}+\frac{12\!\cdots\!82}{68\!\cdots\!03}a^{12}+\frac{16\!\cdots\!53}{11\!\cdots\!51}a^{11}+\frac{87\!\cdots\!82}{68\!\cdots\!03}a^{10}+\frac{11\!\cdots\!85}{11\!\cdots\!51}a^{9}+\frac{25\!\cdots\!28}{11\!\cdots\!51}a^{8}+\frac{22\!\cdots\!80}{11\!\cdots\!51}a^{7}+\frac{27\!\cdots\!31}{11\!\cdots\!51}a^{6}-\frac{45\!\cdots\!37}{68\!\cdots\!03}a^{5}-\frac{29\!\cdots\!59}{11\!\cdots\!51}a^{4}-\frac{71\!\cdots\!02}{11\!\cdots\!51}a^{3}-\frac{31\!\cdots\!43}{11\!\cdots\!51}a^{2}-\frac{10\!\cdots\!05}{11\!\cdots\!51}a+\frac{58\!\cdots\!78}{11\!\cdots\!51}$, $\frac{1}{11\!\cdots\!51}a^{41}+\frac{17\!\cdots\!43}{11\!\cdots\!51}a^{36}-\frac{52\!\cdots\!47}{11\!\cdots\!51}a^{35}-\frac{40\!\cdots\!74}{11\!\cdots\!51}a^{34}+\frac{52\!\cdots\!81}{11\!\cdots\!51}a^{33}-\frac{33\!\cdots\!74}{11\!\cdots\!51}a^{32}+\frac{53\!\cdots\!27}{11\!\cdots\!51}a^{31}+\frac{26\!\cdots\!73}{11\!\cdots\!51}a^{30}+\frac{11\!\cdots\!58}{11\!\cdots\!51}a^{29}-\frac{49\!\cdots\!11}{11\!\cdots\!51}a^{28}+\frac{31\!\cdots\!40}{11\!\cdots\!51}a^{27}-\frac{59\!\cdots\!37}{11\!\cdots\!51}a^{26}+\frac{50\!\cdots\!00}{11\!\cdots\!51}a^{25}-\frac{50\!\cdots\!63}{11\!\cdots\!51}a^{24}+\frac{43\!\cdots\!80}{11\!\cdots\!51}a^{23}+\frac{49\!\cdots\!83}{11\!\cdots\!51}a^{22}-\frac{35\!\cdots\!99}{11\!\cdots\!51}a^{21}-\frac{53\!\cdots\!84}{11\!\cdots\!51}a^{20}+\frac{27\!\cdots\!91}{11\!\cdots\!51}a^{19}-\frac{42\!\cdots\!32}{11\!\cdots\!51}a^{18}+\frac{24\!\cdots\!35}{11\!\cdots\!51}a^{17}-\frac{10\!\cdots\!43}{11\!\cdots\!51}a^{16}+\frac{52\!\cdots\!12}{11\!\cdots\!51}a^{15}-\frac{30\!\cdots\!60}{11\!\cdots\!51}a^{14}+\frac{57\!\cdots\!07}{11\!\cdots\!51}a^{13}+\frac{21\!\cdots\!86}{11\!\cdots\!51}a^{12}-\frac{18\!\cdots\!77}{11\!\cdots\!51}a^{11}-\frac{29\!\cdots\!84}{11\!\cdots\!51}a^{10}-\frac{35\!\cdots\!35}{11\!\cdots\!51}a^{9}+\frac{26\!\cdots\!09}{11\!\cdots\!51}a^{8}-\frac{34\!\cdots\!27}{11\!\cdots\!51}a^{7}-\frac{43\!\cdots\!62}{11\!\cdots\!51}a^{6}-\frac{32\!\cdots\!22}{11\!\cdots\!51}a^{5}-\frac{26\!\cdots\!68}{11\!\cdots\!51}a^{4}-\frac{48\!\cdots\!52}{11\!\cdots\!51}a^{3}-\frac{15\!\cdots\!06}{11\!\cdots\!51}a^{2}+\frac{91\!\cdots\!99}{11\!\cdots\!51}a+\frac{31\!\cdots\!36}{11\!\cdots\!51}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

not computed

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $20$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( \frac{1186100698624582900239519268600628928}{68812784185047783029870312204350653203} a^{41} - \frac{593050349312291450119759634300314464}{68812784185047783029870312204350653203} a^{40} + \frac{14445012079677956035059859664029088016}{68812784185047783029870312204350653203} a^{39} - \frac{13216551487513116603976761521165240859}{68812784185047783029870312204350653203} a^{38} + \frac{149194523591277891951556673714693395872}{68812784185047783029870312204350653203} a^{37} - \frac{206678046735333570366736232553659590704}{68812784185047783029870312204350653203} a^{36} + \frac{1519013748284961364988890051883926883184}{68812784185047783029870312204350653203} a^{35} + \frac{1342454187146844881838950183615090405616}{68812784185047783029870312204350653203} a^{34} + \frac{13645114240673384645587615294422456728592}{68812784185047783029870312204350653203} a^{33} + \frac{15332893174076929520382014087952987384960}{68812784185047783029870312204350653203} a^{32} + \frac{119670440938100233700292971106932990040763}{68812784185047783029870312204350653203} a^{31} + \frac{98975867226297783800344170395906053224000}{68812784185047783029870312204350653203} a^{30} + \frac{1057419956058974115916590829139136066670464}{68812784185047783029870312204350653203} a^{29} + \frac{358194023558255190607540268231133403237152}{68812784185047783029870312204350653203} a^{28} + \frac{2795627485651155650035544520898996377006720}{68812784185047783029870312204350653203} a^{27} + \frac{1190241079638306662998530370487496573430416}{68812784185047783029870312204350653203} a^{26} + \frac{7113524142397604779198672202817346720523040}{68812784185047783029870312204350653203} a^{25} + \frac{2434277806836715207885795474461170260281703}{68812784185047783029870312204350653203} a^{24} + \frac{17385222105796744832808365236469576900524896}{68812784185047783029870312204350653203} a^{23} - \frac{8678486245646583861159940991647593367748832}{68812784185047783029870312204350653203} a^{22} + \frac{43301464548334823254625474578828974696664656}{68812784185047783029870312204350653203} a^{21} - \frac{15319408818841659003311655364645148477759328}{68812784185047783029870312204350653203} a^{20} + \frac{101282902768538641735555424445091306775909520}{68812784185047783029870312204350653203} a^{19} - \frac{22332474976468556109191641243489096330596480}{68812784185047783029870312204350653203} a^{18} + \frac{199662557300016500661691621818281765635048966}{68812784185047783029870312204350653203} a^{17} - \frac{31440714183447289528059198000241584795594864}{68812784185047783029870312204350653203} a^{16} + \frac{48007647831825071103750365809467813164258592}{68812784185047783029870312204350653203} a^{15} - \frac{1484949910517465785715679112380544599459888}{68812784185047783029870312204350653203} a^{14} + \frac{41595672981393094624801081200177216917697936}{68812784185047783029870312204350653203} a^{13} + \frac{76995164978369564809491651286082015477473536}{68812784185047783029870312204350653203} a^{12} + \frac{30001814081864313097746114540830513478258288}{68812784185047783029870312204350653203} a^{11} + \frac{216061521390126675204192078224130140696762755}{68812784185047783029870312204350653203} a^{10} + \frac{2543526865447208945659207155440512415341440}{68812784185047783029870312204350653203} a^{9} + \frac{665696390737214484040151087709436798733088}{68812784185047783029870312204350653203} a^{8} + \frac{170307073666056230983573679570096426482224}{68812784185047783029870312204350653203} a^{7} + \frac{40465604484625582516021559127213356822112}{68812784185047783029870312204350653203} a^{6} + \frac{6660167226473215946077086321633352971600}{68812784185047783029870312204350653203} a^{5} + \frac{1072489195992042495295148172943954399968}{68812784185047783029870312204350653203} a^{4} - \frac{14199422276057202244392332908220744896433}{68812784185047783029870312204350653203} a^{3} + \frac{24399785800277133947784396382641509376}{68812784185047783029870312204350653203} a^{2} + \frac{3177055442744418482784426612323113200}{68812784185047783029870312204350653203} a + \frac{296525174656145725059879817150157232}{68812784185047783029870312204350653203} \)  (order $14$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:  not computed
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  not computed
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr $ not computed \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^42 - x^41 + 13*x^40 - 18*x^39 + 139*x^38 - 250*x^37 + 1451*x^36 + 321*x^35 + 11819*x^34 + 7069*x^33 + 101147*x^32 + 34723*x^31 + 906407*x^30 - 143662*x^29 + 2718926*x^28 - 434521*x^27 + 7093735*x^26 - 1731307*x^25 + 17818760*x^24 - 17036040*x^23 + 50814721*x^22 - 44435389*x^21 + 124550915*x^20 - 97201554*x^19 + 258557330*x^18 - 191477895*x^17 + 222793332*x^16 - 183429282*x^15 + 205234539*x^14 - 104619060*x^13 + 150123312*x^12 + 66144604*x^11 + 21062459*x^10 + 5929237*x^9 + 1586736*x^8 + 394344*x^7 + 106707*x^6 + 17635*x^5 + 2858*x^4 + 449*x^3 + 67*x^2 + 9*x + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^42 - x^41 + 13*x^40 - 18*x^39 + 139*x^38 - 250*x^37 + 1451*x^36 + 321*x^35 + 11819*x^34 + 7069*x^33 + 101147*x^32 + 34723*x^31 + 906407*x^30 - 143662*x^29 + 2718926*x^28 - 434521*x^27 + 7093735*x^26 - 1731307*x^25 + 17818760*x^24 - 17036040*x^23 + 50814721*x^22 - 44435389*x^21 + 124550915*x^20 - 97201554*x^19 + 258557330*x^18 - 191477895*x^17 + 222793332*x^16 - 183429282*x^15 + 205234539*x^14 - 104619060*x^13 + 150123312*x^12 + 66144604*x^11 + 21062459*x^10 + 5929237*x^9 + 1586736*x^8 + 394344*x^7 + 106707*x^6 + 17635*x^5 + 2858*x^4 + 449*x^3 + 67*x^2 + 9*x + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^42 - x^41 + 13*x^40 - 18*x^39 + 139*x^38 - 250*x^37 + 1451*x^36 + 321*x^35 + 11819*x^34 + 7069*x^33 + 101147*x^32 + 34723*x^31 + 906407*x^30 - 143662*x^29 + 2718926*x^28 - 434521*x^27 + 7093735*x^26 - 1731307*x^25 + 17818760*x^24 - 17036040*x^23 + 50814721*x^22 - 44435389*x^21 + 124550915*x^20 - 97201554*x^19 + 258557330*x^18 - 191477895*x^17 + 222793332*x^16 - 183429282*x^15 + 205234539*x^14 - 104619060*x^13 + 150123312*x^12 + 66144604*x^11 + 21062459*x^10 + 5929237*x^9 + 1586736*x^8 + 394344*x^7 + 106707*x^6 + 17635*x^5 + 2858*x^4 + 449*x^3 + 67*x^2 + 9*x + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^42 - x^41 + 13*x^40 - 18*x^39 + 139*x^38 - 250*x^37 + 1451*x^36 + 321*x^35 + 11819*x^34 + 7069*x^33 + 101147*x^32 + 34723*x^31 + 906407*x^30 - 143662*x^29 + 2718926*x^28 - 434521*x^27 + 7093735*x^26 - 1731307*x^25 + 17818760*x^24 - 17036040*x^23 + 50814721*x^22 - 44435389*x^21 + 124550915*x^20 - 97201554*x^19 + 258557330*x^18 - 191477895*x^17 + 222793332*x^16 - 183429282*x^15 + 205234539*x^14 - 104619060*x^13 + 150123312*x^12 + 66144604*x^11 + 21062459*x^10 + 5929237*x^9 + 1586736*x^8 + 394344*x^7 + 106707*x^6 + 17635*x^5 + 2858*x^4 + 449*x^3 + 67*x^2 + 9*x + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{42}$ (as 42T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 42
The 42 conjugacy class representatives for $C_{42}$
Character table for $C_{42}$ is not computed

Intermediate fields

\(\Q(\sqrt{-7}) \), \(\Q(\zeta_{7})^+\), \(\Q(\zeta_{7})\), 7.7.594823321.1, 14.0.291381688005381590432263.1, 21.21.142736986105602839685204351151303673689.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $21^{2}$ $42$ $42$ R $21^{2}$ ${\href{/padicField/13.14.0.1}{14} }^{3}$ ${\href{/padicField/17.6.0.1}{6} }^{7}$ $42$ $21^{2}$ R $42$ $21^{2}$ ${\href{/padicField/41.2.0.1}{2} }^{21}$ ${\href{/padicField/43.7.0.1}{7} }^{6}$ $42$ $21^{2}$ ${\href{/padicField/59.6.0.1}{6} }^{7}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(7\) Copy content Toggle raw display Deg $42$$6$$7$$35$
\(29\) Copy content Toggle raw display 29.7.6.2$x^{7} + 29$$7$$1$$6$$C_7$$[\ ]_{7}$
29.7.6.2$x^{7} + 29$$7$$1$$6$$C_7$$[\ ]_{7}$
29.7.6.2$x^{7} + 29$$7$$1$$6$$C_7$$[\ ]_{7}$
29.7.6.2$x^{7} + 29$$7$$1$$6$$C_7$$[\ ]_{7}$
29.7.6.2$x^{7} + 29$$7$$1$$6$$C_7$$[\ ]_{7}$
29.7.6.2$x^{7} + 29$$7$$1$$6$$C_7$$[\ ]_{7}$