# SageMath code for working with number field 42.0.124938828493629533000907736270182756286928467256210015044892719712262808512338377882811.1 # Some of these functions may take a long time to execute (this depends on the field). # Define the number field: x = polygen(QQ); K. = NumberField(x^42 - 21*x^41 + 231*x^40 - 1750*x^39 + 10395*x^38 - 52269*x^37 + 233611*x^36 - 952918*x^35 + 3599785*x^34 - 12710201*x^33 + 42287014*x^32 - 133370664*x^31 + 400618099*x^30 - 1149584975*x^29 + 3160451592*x^28 - 8341179427*x^27 + 21174580693*x^26 - 51755274760*x^25 + 121953514697*x^24 - 277155797093*x^23 + 608007380806*x^22 - 1287295716241*x^21 + 2631847521996*x^20 - 5192066875520*x^19 + 9886990587068*x^18 - 18146977046303*x^17 + 32112635555588*x^16 - 54655115299659*x^15 + 89504829240548*x^14 - 140479267770793*x^13 + 211514505374151*x^12 - 303526580264439*x^11 + 416119886096880*x^10 - 538840804150264*x^9 + 662937764461147*x^8 - 758558920220686*x^7 + 819087800747125*x^6 - 798550011094073*x^5 + 729734808064227*x^4 - 562691756062212*x^3 + 407486767661645*x^2 - 201294019183845*x + 99519182315771) # Defining polynomial: K.defining_polynomial() # Degree over Q: K.degree() # Signature: K.signature() # Discriminant: K.disc() # Ramified primes: K.disc().support() # Autmorphisms: K.automorphisms() # Integral basis: K.integral_basis() # Class group: K.class_group().invariants() # Unit group: UK = K.unit_group() # Unit rank: UK.rank() # Generator for roots of unity: UK.torsion_generator() # Fundamental units: UK.fundamental_units() # Regulator: K.regulator() # Analytic class number formula: # self-contained SageMath code snippet to compute the analytic class number formula x = polygen(QQ); K. = NumberField(x^42 - 21*x^41 + 231*x^40 - 1750*x^39 + 10395*x^38 - 52269*x^37 + 233611*x^36 - 952918*x^35 + 3599785*x^34 - 12710201*x^33 + 42287014*x^32 - 133370664*x^31 + 400618099*x^30 - 1149584975*x^29 + 3160451592*x^28 - 8341179427*x^27 + 21174580693*x^26 - 51755274760*x^25 + 121953514697*x^24 - 277155797093*x^23 + 608007380806*x^22 - 1287295716241*x^21 + 2631847521996*x^20 - 5192066875520*x^19 + 9886990587068*x^18 - 18146977046303*x^17 + 32112635555588*x^16 - 54655115299659*x^15 + 89504829240548*x^14 - 140479267770793*x^13 + 211514505374151*x^12 - 303526580264439*x^11 + 416119886096880*x^10 - 538840804150264*x^9 + 662937764461147*x^8 - 758558920220686*x^7 + 819087800747125*x^6 - 798550011094073*x^5 + 729734808064227*x^4 - 562691756062212*x^3 + 407486767661645*x^2 - 201294019183845*x + 99519182315771) DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent() hK = K.class_number(); wK = K.unit_group().torsion_generator().order(); 2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK)))) # Intermediate fields: K.subfields()[1:-1] # Galois group: K.galois_group(type='pari') # Frobenius cycle types: # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage: p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]