Properties

Label 41.41.5795937518...1201.1
Degree $41$
Signature $[41, 0]$
Discriminant $83^{40}$
Root discriminant $74.52$
Ramified prime $83$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_{41}$ (as 41T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 21, 210, -1540, -7315, 33649, 100947, -346104, -735471, 2042975, 3268760, -7726160, -9657700, 20058300, 20058300, -37442160, -30421755, 51895935, 34597290, -54627300, -30045015, 44352165, 20160075, -28048800, -10518300, 13884156, 4272048, -5379616, -1344904, 1623160, 324632, -376992, -58905, 66045, 7770, -8436, -703, 741, 39, -40, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^41 - x^40 - 40*x^39 + 39*x^38 + 741*x^37 - 703*x^36 - 8436*x^35 + 7770*x^34 + 66045*x^33 - 58905*x^32 - 376992*x^31 + 324632*x^30 + 1623160*x^29 - 1344904*x^28 - 5379616*x^27 + 4272048*x^26 + 13884156*x^25 - 10518300*x^24 - 28048800*x^23 + 20160075*x^22 + 44352165*x^21 - 30045015*x^20 - 54627300*x^19 + 34597290*x^18 + 51895935*x^17 - 30421755*x^16 - 37442160*x^15 + 20058300*x^14 + 20058300*x^13 - 9657700*x^12 - 7726160*x^11 + 3268760*x^10 + 2042975*x^9 - 735471*x^8 - 346104*x^7 + 100947*x^6 + 33649*x^5 - 7315*x^4 - 1540*x^3 + 210*x^2 + 21*x - 1)
 
gp: K = bnfinit(x^41 - x^40 - 40*x^39 + 39*x^38 + 741*x^37 - 703*x^36 - 8436*x^35 + 7770*x^34 + 66045*x^33 - 58905*x^32 - 376992*x^31 + 324632*x^30 + 1623160*x^29 - 1344904*x^28 - 5379616*x^27 + 4272048*x^26 + 13884156*x^25 - 10518300*x^24 - 28048800*x^23 + 20160075*x^22 + 44352165*x^21 - 30045015*x^20 - 54627300*x^19 + 34597290*x^18 + 51895935*x^17 - 30421755*x^16 - 37442160*x^15 + 20058300*x^14 + 20058300*x^13 - 9657700*x^12 - 7726160*x^11 + 3268760*x^10 + 2042975*x^9 - 735471*x^8 - 346104*x^7 + 100947*x^6 + 33649*x^5 - 7315*x^4 - 1540*x^3 + 210*x^2 + 21*x - 1, 1)
 

Normalized defining polynomial

\( x^{41} - x^{40} - 40 x^{39} + 39 x^{38} + 741 x^{37} - 703 x^{36} - 8436 x^{35} + 7770 x^{34} + 66045 x^{33} - 58905 x^{32} - 376992 x^{31} + 324632 x^{30} + 1623160 x^{29} - 1344904 x^{28} - 5379616 x^{27} + 4272048 x^{26} + 13884156 x^{25} - 10518300 x^{24} - 28048800 x^{23} + 20160075 x^{22} + 44352165 x^{21} - 30045015 x^{20} - 54627300 x^{19} + 34597290 x^{18} + 51895935 x^{17} - 30421755 x^{16} - 37442160 x^{15} + 20058300 x^{14} + 20058300 x^{13} - 9657700 x^{12} - 7726160 x^{11} + 3268760 x^{10} + 2042975 x^{9} - 735471 x^{8} - 346104 x^{7} + 100947 x^{6} + 33649 x^{5} - 7315 x^{4} - 1540 x^{3} + 210 x^{2} + 21 x - 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $41$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[41, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(57959375186337998161464929843210464026538099255933595673241672975683189751201=83^{40}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $74.52$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $83$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(83\)
Dirichlet character group:    $\lbrace$$\chi_{83}(1,·)$, $\chi_{83}(3,·)$, $\chi_{83}(4,·)$, $\chi_{83}(7,·)$, $\chi_{83}(9,·)$, $\chi_{83}(10,·)$, $\chi_{83}(11,·)$, $\chi_{83}(12,·)$, $\chi_{83}(16,·)$, $\chi_{83}(17,·)$, $\chi_{83}(21,·)$, $\chi_{83}(23,·)$, $\chi_{83}(25,·)$, $\chi_{83}(26,·)$, $\chi_{83}(27,·)$, $\chi_{83}(28,·)$, $\chi_{83}(29,·)$, $\chi_{83}(30,·)$, $\chi_{83}(31,·)$, $\chi_{83}(33,·)$, $\chi_{83}(36,·)$, $\chi_{83}(37,·)$, $\chi_{83}(38,·)$, $\chi_{83}(40,·)$, $\chi_{83}(41,·)$, $\chi_{83}(44,·)$, $\chi_{83}(48,·)$, $\chi_{83}(49,·)$, $\chi_{83}(51,·)$, $\chi_{83}(59,·)$, $\chi_{83}(61,·)$, $\chi_{83}(63,·)$, $\chi_{83}(64,·)$, $\chi_{83}(65,·)$, $\chi_{83}(68,·)$, $\chi_{83}(69,·)$, $\chi_{83}(70,·)$, $\chi_{83}(75,·)$, $\chi_{83}(77,·)$, $\chi_{83}(78,·)$, $\chi_{83}(81,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$, $a^{37}$, $a^{38}$, $a^{39}$, $a^{40}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $40$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 29837391421490950000000000 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{41}$ (as 41T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 41
The 41 conjugacy class representatives for $C_{41}$
Character table for $C_{41}$ is not computed

Intermediate fields

The extension is primitive: there are no intermediate fields between this field and $\Q$.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $41$ $41$ $41$ $41$ $41$ $41$ $41$ $41$ $41$ $41$ $41$ $41$ $41$ $41$ $41$ $41$ $41$

Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
83Data not computed