Normalized defining polynomial
\( x^{41} + 4 x - 4 \)
Invariants
| Degree: | $41$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 20]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3438740475870829672142694556791350302292427122659925573655422607717853822976=2^{40}\cdot 63506090654183\cdot 49247500694181610257024215345813183672691438654247\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $69.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 63506090654183, 49247500694181610257024215345813183672691438654247$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{2} a^{21}$, $\frac{1}{2} a^{22}$, $\frac{1}{2} a^{23}$, $\frac{1}{2} a^{24}$, $\frac{1}{2} a^{25}$, $\frac{1}{2} a^{26}$, $\frac{1}{2} a^{27}$, $\frac{1}{2} a^{28}$, $\frac{1}{2} a^{29}$, $\frac{1}{2} a^{30}$, $\frac{1}{2} a^{31}$, $\frac{1}{2} a^{32}$, $\frac{1}{2} a^{33}$, $\frac{1}{2} a^{34}$, $\frac{1}{2} a^{35}$, $\frac{1}{2} a^{36}$, $\frac{1}{2} a^{37}$, $\frac{1}{2} a^{38}$, $\frac{1}{2} a^{39}$, $\frac{1}{42} a^{40} - \frac{5}{21} a^{39} - \frac{5}{42} a^{38} + \frac{4}{21} a^{37} + \frac{2}{21} a^{36} + \frac{1}{21} a^{35} + \frac{1}{42} a^{34} - \frac{5}{21} a^{33} - \frac{5}{42} a^{32} + \frac{4}{21} a^{31} + \frac{2}{21} a^{30} + \frac{1}{21} a^{29} + \frac{1}{42} a^{28} - \frac{5}{21} a^{27} - \frac{5}{42} a^{26} + \frac{4}{21} a^{25} + \frac{2}{21} a^{24} + \frac{1}{21} a^{23} + \frac{1}{42} a^{22} - \frac{5}{21} a^{21} + \frac{8}{21} a^{20} + \frac{4}{21} a^{19} + \frac{2}{21} a^{18} + \frac{1}{21} a^{17} - \frac{10}{21} a^{16} - \frac{5}{21} a^{15} + \frac{8}{21} a^{14} + \frac{4}{21} a^{13} + \frac{2}{21} a^{12} + \frac{1}{21} a^{11} - \frac{10}{21} a^{10} - \frac{5}{21} a^{9} + \frac{8}{21} a^{8} + \frac{4}{21} a^{7} + \frac{2}{21} a^{6} + \frac{1}{21} a^{5} - \frac{10}{21} a^{4} - \frac{5}{21} a^{3} + \frac{8}{21} a^{2} + \frac{4}{21} a + \frac{4}{21}$
Class group and class number
Not computed
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_{41}$ (as 41T10):
| A non-solvable group of order 33452526613163807108170062053440751665152000000000 |
| The 44583 conjugacy class representatives for $S_{41}$ are not computed |
| Character table for $S_{41}$ is not computed |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $39{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }$ | $31{,}\,{\href{/LocalNumberField/5.8.0.1}{8} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | $22{,}\,{\href{/LocalNumberField/7.14.0.1}{14} }{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | $30{,}\,{\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.13.0.1}{13} }{,}\,{\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.11.0.1}{11} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | $19{,}\,18{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | $37{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }$ | $36{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{2}$ | $24{,}\,17$ | $20{,}\,{\href{/LocalNumberField/31.14.0.1}{14} }{,}\,{\href{/LocalNumberField/31.7.0.1}{7} }$ | $19{,}\,{\href{/LocalNumberField/37.11.0.1}{11} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{8}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.7.0.1}{7} }{,}\,{\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | $34{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | $23{,}\,{\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.8.0.1}{8} }$ | $21{,}\,{\href{/LocalNumberField/59.8.0.1}{8} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 63506090654183 | Data not computed | ||||||
| 49247500694181610257024215345813183672691438654247 | Data not computed | ||||||