Normalized defining polynomial
\( x^{41} - x - 5 \)
Invariants
| Degree: | $41$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[1, 20]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(12104261537685597420144397264830486419578886982787909685292630538833691389299929141998291015625=5^{41}\cdot 7033139213\cdot 64812836603\cdot 37176884662660649\cdot 15706697658577462999892991283\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $197.11$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7033139213, 64812836603, 37176884662660649, 15706697658577462999892991283$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$, $a^{37}$, $a^{38}$, $a^{39}$, $a^{40}$
Class group and class number
Not computed
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_{41}$ (as 41T10):
| A non-solvable group of order 33452526613163807108170062053440751665152000000000 |
| The 44583 conjugacy class representatives for $S_{41}$ are not computed |
| Character table for $S_{41}$ is not computed |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $32{,}\,{\href{/LocalNumberField/2.7.0.1}{7} }{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }$ | $41$ | R | $24{,}\,15{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | $39{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | $24{,}\,{\href{/LocalNumberField/13.13.0.1}{13} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}$ | $29{,}\,{\href{/LocalNumberField/17.5.0.1}{5} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | $29{,}\,{\href{/LocalNumberField/19.9.0.1}{9} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | $19{,}\,{\href{/LocalNumberField/23.10.0.1}{10} }{,}\,{\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | $24{,}\,17$ | $39{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | $38{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | $41$ | $26{,}\,{\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }$ | $18{,}\,16{,}\,{\href{/LocalNumberField/47.7.0.1}{7} }$ | $18{,}\,17{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }$ | $33{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.5.5.1 | $x^{5} + 20 x + 5$ | $5$ | $1$ | $5$ | $F_5$ | $[5/4]_{4}$ | |
| 5.5.5.4 | $x^{5} + 10 x + 5$ | $5$ | $1$ | $5$ | $F_5$ | $[5/4]_{4}$ | |
| 5.5.6.2 | $x^{5} + 15 x^{2} + 5$ | $5$ | $1$ | $6$ | $D_{5}$ | $[3/2]_{2}$ | |
| 5.5.5.3 | $x^{5} + 15 x + 5$ | $5$ | $1$ | $5$ | $F_5$ | $[5/4]_{4}$ | |
| 5.10.10.5 | $x^{10} + 15 x^{6} + 10 x^{5} + 75 x^{2} + 75 x + 25$ | $5$ | $2$ | $10$ | $C_5^2 : C_8$ | $[5/4, 5/4]_{4}^{2}$ | |
| 5.10.10.13 | $x^{10} + 15 x^{6} + 10 x^{5} + 100 x^{2} + 75 x + 25$ | $5$ | $2$ | $10$ | $(C_5^2 : C_4) : C_2$ | $[5/4, 5/4]_{4}^{2}$ | |
| 7033139213 | Data not computed | ||||||
| 64812836603 | Data not computed | ||||||
| 37176884662660649 | Data not computed | ||||||
| 15706697658577462999892991283 | Data not computed | ||||||