Normalized defining polynomial
\( x^{40} - 72 x^{38} + 2292 x^{36} - 42688 x^{34} + 518914 x^{32} - 4350192 x^{30} + 25920664 x^{28} - 111555328 x^{26} + 349153248 x^{24} - 794852864 x^{22} + 1309625664 x^{20} - 1548248640 x^{18} + 1299305304 x^{16} - 765197952 x^{14} + 312117152 x^{12} - 86580736 x^{10} + 15867056 x^{8} - 1828864 x^{6} + 121280 x^{4} - 3840 x^{2} + 32 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{2} a^{11}$, $\frac{1}{2} a^{12}$, $\frac{1}{2} a^{13}$, $\frac{1}{2} a^{14}$, $\frac{1}{2} a^{15}$, $\frac{1}{4} a^{16}$, $\frac{1}{4} a^{17}$, $\frac{1}{4} a^{18}$, $\frac{1}{4} a^{19}$, $\frac{1}{4} a^{20}$, $\frac{1}{4} a^{21}$, $\frac{1}{4} a^{22}$, $\frac{1}{4} a^{23}$, $\frac{1}{8} a^{24}$, $\frac{1}{8} a^{25}$, $\frac{1}{8} a^{26}$, $\frac{1}{8} a^{27}$, $\frac{1}{8} a^{28}$, $\frac{1}{8} a^{29}$, $\frac{1}{8} a^{30}$, $\frac{1}{8} a^{31}$, $\frac{1}{16} a^{32}$, $\frac{1}{16} a^{33}$, $\frac{1}{16} a^{34}$, $\frac{1}{16} a^{35}$, $\frac{1}{100336} a^{36} - \frac{1795}{100336} a^{34} + \frac{2579}{100336} a^{32} + \frac{305}{6271} a^{30} + \frac{2693}{50168} a^{28} - \frac{25}{25084} a^{26} + \frac{631}{50168} a^{24} + \frac{351}{12542} a^{22} - \frac{293}{25084} a^{20} - \frac{1035}{12542} a^{18} + \frac{1041}{25084} a^{16} - \frac{465}{12542} a^{14} + \frac{383}{12542} a^{12} + \frac{1327}{6271} a^{10} - \frac{2681}{12542} a^{8} - \frac{3051}{6271} a^{6} + \frac{1499}{6271} a^{4} + \frac{2209}{6271} a^{2} + \frac{2088}{6271}$, $\frac{1}{100336} a^{37} - \frac{1795}{100336} a^{35} + \frac{2579}{100336} a^{33} + \frac{305}{6271} a^{31} + \frac{2693}{50168} a^{29} - \frac{25}{25084} a^{27} + \frac{631}{50168} a^{25} + \frac{351}{12542} a^{23} - \frac{293}{25084} a^{21} - \frac{1035}{12542} a^{19} + \frac{1041}{25084} a^{17} - \frac{465}{12542} a^{15} + \frac{383}{12542} a^{13} + \frac{1327}{6271} a^{11} - \frac{2681}{12542} a^{9} - \frac{3051}{6271} a^{7} + \frac{1499}{6271} a^{5} + \frac{2209}{6271} a^{3} + \frac{2088}{6271} a$, $\frac{1}{50277416338424686093777005462144418517776} a^{38} + \frac{64841939243783995601803937325143123}{25138708169212343046888502731072209258888} a^{36} + \frac{179865112797785542516501751504162436853}{6284677042303085761722125682768052314722} a^{34} - \frac{606663352054164231707861068630606228533}{50277416338424686093777005462144418517776} a^{32} + \frac{1337789427633593458131914258060193148995}{25138708169212343046888502731072209258888} a^{30} - \frac{312003109023529472263213426510897665817}{6284677042303085761722125682768052314722} a^{28} + \frac{276305956565823144435674642509982864023}{25138708169212343046888502731072209258888} a^{26} - \frac{34629264057161305932238204117558506583}{6284677042303085761722125682768052314722} a^{24} - \frac{1077448491385276236500578669027796067575}{12569354084606171523444251365536104629444} a^{22} - \frac{787193084522227703810987886912977206927}{12569354084606171523444251365536104629444} a^{20} + \frac{246696994416685941658239577589291980133}{12569354084606171523444251365536104629444} a^{18} + \frac{519461728574506300858527415592226822411}{12569354084606171523444251365536104629444} a^{16} - \frac{166195963772033674541165883693570159737}{3142338521151542880861062841384026157361} a^{14} - \frac{497459244361003441529332978806172702615}{6284677042303085761722125682768052314722} a^{12} - \frac{416064899811288606300132351105451403162}{3142338521151542880861062841384026157361} a^{10} + \frac{635729164679928178838317738376904668653}{3142338521151542880861062841384026157361} a^{8} - \frac{886648884067543375413804118958530872588}{3142338521151542880861062841384026157361} a^{6} + \frac{1214456868241144568525247728176946636258}{3142338521151542880861062841384026157361} a^{4} + \frac{784713030257190449083064562976278778147}{3142338521151542880861062841384026157361} a^{2} - \frac{99636909455647602176679607998294349347}{3142338521151542880861062841384026157361}$, $\frac{1}{50277416338424686093777005462144418517776} a^{39} + \frac{64841939243783995601803937325143123}{25138708169212343046888502731072209258888} a^{37} + \frac{179865112797785542516501751504162436853}{6284677042303085761722125682768052314722} a^{35} - \frac{606663352054164231707861068630606228533}{50277416338424686093777005462144418517776} a^{33} + \frac{1337789427633593458131914258060193148995}{25138708169212343046888502731072209258888} a^{31} - \frac{312003109023529472263213426510897665817}{6284677042303085761722125682768052314722} a^{29} + \frac{276305956565823144435674642509982864023}{25138708169212343046888502731072209258888} a^{27} - \frac{34629264057161305932238204117558506583}{6284677042303085761722125682768052314722} a^{25} - \frac{1077448491385276236500578669027796067575}{12569354084606171523444251365536104629444} a^{23} - \frac{787193084522227703810987886912977206927}{12569354084606171523444251365536104629444} a^{21} + \frac{246696994416685941658239577589291980133}{12569354084606171523444251365536104629444} a^{19} + \frac{519461728574506300858527415592226822411}{12569354084606171523444251365536104629444} a^{17} - \frac{166195963772033674541165883693570159737}{3142338521151542880861062841384026157361} a^{15} - \frac{497459244361003441529332978806172702615}{6284677042303085761722125682768052314722} a^{13} - \frac{416064899811288606300132351105451403162}{3142338521151542880861062841384026157361} a^{11} + \frac{635729164679928178838317738376904668653}{3142338521151542880861062841384026157361} a^{9} - \frac{886648884067543375413804118958530872588}{3142338521151542880861062841384026157361} a^{7} + \frac{1214456868241144568525247728176946636258}{3142338521151542880861062841384026157361} a^{5} + \frac{784713030257190449083064562976278778147}{3142338521151542880861062841384026157361} a^{3} - \frac{99636909455647602176679607998294349347}{3142338521151542880861062841384026157361} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $39$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1748425349013661700000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 40 |
| The 40 conjugacy class representatives for $C_{40}$ |
| Character table for $C_{40}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), \(\Q(\zeta_{11})^+\), \(\Q(\zeta_{32})^+\), 10.10.7024111812608.1, 20.20.1655513490330868290261743826894848.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $40$ | $40$ | $20^{2}$ | R | $40$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{4}$ | $40$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{10}$ | $40$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{8}$ | $40$ | $20^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{5}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{4}$ | $40$ | $40$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 11 | Data not computed | ||||||