Normalized defining polynomial
\( x^{40} - 82 x^{38} + 3116 x^{36} - 72816 x^{34} + 1170960 x^{32} - 13739264 x^{30} + 121690624 x^{28} - 830359552 x^{26} + 4416003072 x^{24} - 18400012800 x^{22} + 60067138560 x^{20} - 152898170880 x^{18} + 300523991040 x^{16} - 449134755840 x^{14} + 499038617600 x^{12} - 399230894080 x^{10} + 219576991744 x^{8} - 77497761792 x^{6} + 15724183552 x^{4} - 1504706560 x^{2} + 42991616 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2}$, $\frac{1}{2} a^{3}$, $\frac{1}{4} a^{4}$, $\frac{1}{4} a^{5}$, $\frac{1}{8} a^{6}$, $\frac{1}{8} a^{7}$, $\frac{1}{16} a^{8}$, $\frac{1}{16} a^{9}$, $\frac{1}{32} a^{10}$, $\frac{1}{32} a^{11}$, $\frac{1}{64} a^{12}$, $\frac{1}{64} a^{13}$, $\frac{1}{128} a^{14}$, $\frac{1}{128} a^{15}$, $\frac{1}{256} a^{16}$, $\frac{1}{256} a^{17}$, $\frac{1}{512} a^{18}$, $\frac{1}{512} a^{19}$, $\frac{1}{1024} a^{20}$, $\frac{1}{1024} a^{21}$, $\frac{1}{2048} a^{22}$, $\frac{1}{2048} a^{23}$, $\frac{1}{4096} a^{24}$, $\frac{1}{4096} a^{25}$, $\frac{1}{8192} a^{26}$, $\frac{1}{8192} a^{27}$, $\frac{1}{16384} a^{28}$, $\frac{1}{16384} a^{29}$, $\frac{1}{32768} a^{30}$, $\frac{1}{32768} a^{31}$, $\frac{1}{65536} a^{32}$, $\frac{1}{65536} a^{33}$, $\frac{1}{131072} a^{34}$, $\frac{1}{131072} a^{35}$, $\frac{1}{262144} a^{36}$, $\frac{1}{262144} a^{37}$, $\frac{1}{524288} a^{38}$, $\frac{1}{524288} a^{39}$
Class group and class number
Not computed
Unit group
| Rank: | $39$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 40 |
| The 40 conjugacy class representatives for $C_{40}$ |
| Character table for $C_{40}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.68921.1, 5.5.2825761.1, 8.8.797713505816576.1, 10.10.327381934393961.1, \(\Q(\zeta_{41})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{5}$ | $20^{2}$ | $40$ | $40$ | $40$ | $40$ | $40$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{8}$ | $40$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{8}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{4}$ | R | $20^{2}$ | $40$ | $40$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 41 | Data not computed | ||||||