Normalized defining polynomial
\( x^{40} - 41 x^{38} + 779 x^{36} - 9102 x^{34} + 73185 x^{32} - 429352 x^{30} + 1901416 x^{28} - 6487184 x^{26} + 17250012 x^{24} - 35937525 x^{22} + 58659315 x^{20} - 74657310 x^{18} + 73370115 x^{16} - 54826020 x^{14} + 30458900 x^{12} - 12183560 x^{10} + 3350479 x^{8} - 591261 x^{6} + 59983 x^{4} - 2870 x^{2} + 41 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$, $a^{37}$, $a^{38}$, $a^{39}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $39$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6180661033584260000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 40 |
| The 40 conjugacy class representatives for $C_{40}$ |
| Character table for $C_{40}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.68921.1, 5.5.2825761.1, 8.8.49857094113536.1, 10.10.327381934393961.1, \(\Q(\zeta_{41})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{5}$ | $20^{2}$ | $40$ | $40$ | $40$ | $40$ | $40$ | ${\href{/LocalNumberField/23.5.0.1}{5} }^{8}$ | $40$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{8}$ | ${\href{/LocalNumberField/37.5.0.1}{5} }^{8}$ | R | $20^{2}$ | $40$ | $40$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 41 | Data not computed | ||||||