Properties

Label 40.40.8705029327...9936.1
Degree $40$
Signature $[40, 0]$
Discriminant $2^{40}\cdot 41^{39}$
Root discriminant $74.73$
Ramified primes $2, 41$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_{40}$ (as 40T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![41, 0, -2870, 0, 59983, 0, -591261, 0, 3350479, 0, -12183560, 0, 30458900, 0, -54826020, 0, 73370115, 0, -74657310, 0, 58659315, 0, -35937525, 0, 17250012, 0, -6487184, 0, 1901416, 0, -429352, 0, 73185, 0, -9102, 0, 779, 0, -41, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^40 - 41*x^38 + 779*x^36 - 9102*x^34 + 73185*x^32 - 429352*x^30 + 1901416*x^28 - 6487184*x^26 + 17250012*x^24 - 35937525*x^22 + 58659315*x^20 - 74657310*x^18 + 73370115*x^16 - 54826020*x^14 + 30458900*x^12 - 12183560*x^10 + 3350479*x^8 - 591261*x^6 + 59983*x^4 - 2870*x^2 + 41)
 
gp: K = bnfinit(x^40 - 41*x^38 + 779*x^36 - 9102*x^34 + 73185*x^32 - 429352*x^30 + 1901416*x^28 - 6487184*x^26 + 17250012*x^24 - 35937525*x^22 + 58659315*x^20 - 74657310*x^18 + 73370115*x^16 - 54826020*x^14 + 30458900*x^12 - 12183560*x^10 + 3350479*x^8 - 591261*x^6 + 59983*x^4 - 2870*x^2 + 41, 1)
 

Normalized defining polynomial

\( x^{40} - 41 x^{38} + 779 x^{36} - 9102 x^{34} + 73185 x^{32} - 429352 x^{30} + 1901416 x^{28} - 6487184 x^{26} + 17250012 x^{24} - 35937525 x^{22} + 58659315 x^{20} - 74657310 x^{18} + 73370115 x^{16} - 54826020 x^{14} + 30458900 x^{12} - 12183560 x^{10} + 3350479 x^{8} - 591261 x^{6} + 59983 x^{4} - 2870 x^{2} + 41 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $40$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[40, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(870502932794550416715512205314557822885758691905429612124950249853404839936=2^{40}\cdot 41^{39}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $74.73$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 41$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(164=2^{2}\cdot 41\)
Dirichlet character group:    $\lbrace$$\chi_{164}(1,·)$, $\chi_{164}(3,·)$, $\chi_{164}(5,·)$, $\chi_{164}(7,·)$, $\chi_{164}(9,·)$, $\chi_{164}(11,·)$, $\chi_{164}(141,·)$, $\chi_{164}(15,·)$, $\chi_{164}(19,·)$, $\chi_{164}(21,·)$, $\chi_{164}(151,·)$, $\chi_{164}(25,·)$, $\chi_{164}(27,·)$, $\chi_{164}(133,·)$, $\chi_{164}(33,·)$, $\chi_{164}(35,·)$, $\chi_{164}(37,·)$, $\chi_{164}(135,·)$, $\chi_{164}(45,·)$, $\chi_{164}(47,·)$, $\chi_{164}(49,·)$, $\chi_{164}(55,·)$, $\chi_{164}(57,·)$, $\chi_{164}(61,·)$, $\chi_{164}(63,·)$, $\chi_{164}(67,·)$, $\chi_{164}(71,·)$, $\chi_{164}(73,·)$, $\chi_{164}(75,·)$, $\chi_{164}(77,·)$, $\chi_{164}(79,·)$, $\chi_{164}(81,·)$, $\chi_{164}(95,·)$, $\chi_{164}(99,·)$, $\chi_{164}(105,·)$, $\chi_{164}(111,·)$, $\chi_{164}(113,·)$, $\chi_{164}(147,·)$, $\chi_{164}(121,·)$, $\chi_{164}(125,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$, $a^{37}$, $a^{38}$, $a^{39}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $39$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 6180661033584260000000000 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{40}$ (as 40T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 40
The 40 conjugacy class representatives for $C_{40}$
Character table for $C_{40}$ is not computed

Intermediate fields

\(\Q(\sqrt{41}) \), 4.4.68921.1, 5.5.2825761.1, 8.8.49857094113536.1, 10.10.327381934393961.1, \(\Q(\zeta_{41})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.8.0.1}{8} }^{5}$ $20^{2}$ $40$ $40$ $40$ $40$ $40$ ${\href{/LocalNumberField/23.5.0.1}{5} }^{8}$ $40$ ${\href{/LocalNumberField/31.5.0.1}{5} }^{8}$ ${\href{/LocalNumberField/37.5.0.1}{5} }^{8}$ R $20^{2}$ $40$ $40$ ${\href{/LocalNumberField/59.10.0.1}{10} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
41Data not computed