Normalized defining polynomial
\( x^{40} - 205 x^{38} + 19475 x^{36} - 1137750 x^{34} + 45740625 x^{32} - 1341725000 x^{30} + 29709625000 x^{28} - 506811250000 x^{26} + 6738285937500 x^{24} - 70190478515625 x^{22} + 572844873046875 x^{20} - 3645376464843750 x^{18} + 17912625732421875 x^{16} - 66926293945312500 x^{14} + 185906372070312500 x^{12} - 371812744140625000 x^{10} + 511242523193359375 x^{8} - 451096343994140625 x^{6} + 228816986083984375 x^{4} - 54740905761718750 x^{2} + 3910064697265625 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{5} a^{2}$, $\frac{1}{5} a^{3}$, $\frac{1}{25} a^{4}$, $\frac{1}{25} a^{5}$, $\frac{1}{125} a^{6}$, $\frac{1}{125} a^{7}$, $\frac{1}{625} a^{8}$, $\frac{1}{625} a^{9}$, $\frac{1}{3125} a^{10}$, $\frac{1}{3125} a^{11}$, $\frac{1}{15625} a^{12}$, $\frac{1}{15625} a^{13}$, $\frac{1}{78125} a^{14}$, $\frac{1}{78125} a^{15}$, $\frac{1}{390625} a^{16}$, $\frac{1}{390625} a^{17}$, $\frac{1}{1953125} a^{18}$, $\frac{1}{1953125} a^{19}$, $\frac{1}{9765625} a^{20}$, $\frac{1}{9765625} a^{21}$, $\frac{1}{48828125} a^{22}$, $\frac{1}{48828125} a^{23}$, $\frac{1}{244140625} a^{24}$, $\frac{1}{244140625} a^{25}$, $\frac{1}{1220703125} a^{26}$, $\frac{1}{1220703125} a^{27}$, $\frac{1}{6103515625} a^{28}$, $\frac{1}{6103515625} a^{29}$, $\frac{1}{30517578125} a^{30}$, $\frac{1}{30517578125} a^{31}$, $\frac{1}{152587890625} a^{32}$, $\frac{1}{152587890625} a^{33}$, $\frac{1}{762939453125} a^{34}$, $\frac{1}{762939453125} a^{35}$, $\frac{1}{3814697265625} a^{36}$, $\frac{1}{3814697265625} a^{37}$, $\frac{1}{19073486328125} a^{38}$, $\frac{1}{19073486328125} a^{39}$
Class group and class number
Not computed
Unit group
| Rank: | $39$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 40 |
| The 40 conjugacy class representatives for $C_{40}$ |
| Character table for $C_{40}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.68921.1, 5.5.2825761.1, 8.8.31160683820960000.1, 10.10.327381934393961.1, \(\Q(\zeta_{41})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{5}$ | R | $40$ | $40$ | $40$ | $40$ | $40$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{4}$ | $40$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{8}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{4}$ | R | $20^{2}$ | $40$ | $40$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 41 | Data not computed | ||||||