Normalized defining polynomial
\( x^{40} - 187 x^{38} + 14960 x^{36} - 680119 x^{34} + 19741777 x^{32} - 390041047 x^{30} + 5454569527 x^{28} - 55335959701 x^{26} + 413297142302 x^{24} - 2289732248573 x^{22} + 9425882445199 x^{20} - 28741268505675 x^{18} + 64435213817040 x^{16} - 105031396902212 x^{14} + 122647277393476 x^{12} - 100614642637531 x^{10} + 56373730133061 x^{8} - 20621821326304 x^{6} + 4552599667803 x^{4} - 519703158425 x^{2} + 20788126337 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{17} a^{8}$, $\frac{1}{17} a^{9}$, $\frac{1}{187} a^{10}$, $\frac{1}{187} a^{11}$, $\frac{1}{187} a^{12}$, $\frac{1}{187} a^{13}$, $\frac{1}{187} a^{14}$, $\frac{1}{187} a^{15}$, $\frac{1}{3179} a^{16}$, $\frac{1}{3179} a^{17}$, $\frac{1}{3179} a^{18}$, $\frac{1}{3179} a^{19}$, $\frac{1}{34969} a^{20}$, $\frac{1}{34969} a^{21}$, $\frac{1}{34969} a^{22}$, $\frac{1}{34969} a^{23}$, $\frac{1}{594473} a^{24}$, $\frac{1}{594473} a^{25}$, $\frac{1}{594473} a^{26}$, $\frac{1}{594473} a^{27}$, $\frac{1}{594473} a^{28}$, $\frac{1}{594473} a^{29}$, $\frac{1}{340038556} a^{30} + \frac{4}{7728149} a^{28} + \frac{1}{7728149} a^{26} + \frac{5}{15456298} a^{24} - \frac{6}{454597} a^{22} + \frac{1}{454597} a^{20} + \frac{25}{165308} a^{18} + \frac{2}{41327} a^{16} + \frac{5}{2431} a^{14} + \frac{1}{2431} a^{12} - \frac{1}{2431} a^{10} - \frac{3}{221} a^{8} + \frac{4}{13} a^{4} - \frac{4}{13} a^{2} - \frac{5}{52}$, $\frac{1}{340038556} a^{31} + \frac{4}{7728149} a^{29} + \frac{1}{7728149} a^{27} + \frac{5}{15456298} a^{25} - \frac{6}{454597} a^{23} + \frac{1}{454597} a^{21} + \frac{25}{165308} a^{19} + \frac{2}{41327} a^{17} + \frac{5}{2431} a^{15} + \frac{1}{2431} a^{13} - \frac{1}{2431} a^{11} - \frac{3}{221} a^{9} + \frac{4}{13} a^{5} - \frac{4}{13} a^{3} - \frac{5}{52} a$, $\frac{1}{5780655452} a^{32} + \frac{3}{7728149} a^{28} + \frac{1}{15456298} a^{26} + \frac{1}{7728149} a^{24} + \frac{1}{454597} a^{22} - \frac{1}{139876} a^{20} + \frac{5}{41327} a^{18} - \frac{5}{41327} a^{16} - \frac{2}{2431} a^{14} - \frac{2}{2431} a^{12} + \frac{2}{221} a^{8} + \frac{1}{13} a^{6} + \frac{5}{13} a^{4} - \frac{9}{52} a^{2} + \frac{3}{13}$, $\frac{1}{5780655452} a^{33} + \frac{3}{7728149} a^{29} + \frac{1}{15456298} a^{27} + \frac{1}{7728149} a^{25} + \frac{1}{454597} a^{23} - \frac{1}{139876} a^{21} + \frac{5}{41327} a^{19} - \frac{5}{41327} a^{17} - \frac{2}{2431} a^{15} - \frac{2}{2431} a^{13} + \frac{2}{221} a^{9} + \frac{1}{13} a^{7} + \frac{5}{13} a^{5} - \frac{9}{52} a^{3} + \frac{3}{13} a$, $\frac{1}{34470048460276} a^{34} + \frac{431}{17235024230138} a^{32} - \frac{2953}{2027649909428} a^{30} - \frac{601}{1035571966} a^{28} + \frac{32018}{46082952487} a^{26} + \frac{2537}{8378718634} a^{24} + \frac{89435}{10843047644} a^{22} + \frac{66701}{5421523822} a^{20} - \frac{43837}{985731604} a^{18} - \frac{10189}{246432901} a^{16} - \frac{300}{852709} a^{14} - \frac{2048}{1317823} a^{12} - \frac{500}{1115081} a^{10} + \frac{30028}{1317823} a^{8} + \frac{38489}{77519} a^{6} + \frac{13631}{310076} a^{4} + \frac{36641}{155038} a^{2} - \frac{20927}{310076}$, $\frac{1}{34470048460276} a^{35} + \frac{431}{17235024230138} a^{33} - \frac{2953}{2027649909428} a^{31} - \frac{601}{1035571966} a^{29} + \frac{32018}{46082952487} a^{27} + \frac{2537}{8378718634} a^{25} + \frac{89435}{10843047644} a^{23} + \frac{66701}{5421523822} a^{21} - \frac{43837}{985731604} a^{19} - \frac{10189}{246432901} a^{17} - \frac{300}{852709} a^{15} - \frac{2048}{1317823} a^{13} - \frac{500}{1115081} a^{11} + \frac{30028}{1317823} a^{9} + \frac{38489}{77519} a^{7} + \frac{13631}{310076} a^{5} + \frac{36641}{155038} a^{3} - \frac{20927}{310076} a$, $\frac{1}{34470048460276} a^{36} - \frac{83}{17235024230138} a^{32} - \frac{1381}{1013824954714} a^{30} - \frac{20848}{46082952487} a^{28} - \frac{33521}{46082952487} a^{26} - \frac{79873}{184331809948} a^{24} + \frac{14635}{2710761911} a^{22} - \frac{4935}{492865802} a^{20} + \frac{109}{1115081} a^{18} - \frac{2127}{18956377} a^{16} + \frac{2967}{1115081} a^{14} + \frac{20960}{14496053} a^{12} + \frac{18012}{14496053} a^{10} + \frac{329}{77519} a^{8} + \frac{87643}{310076} a^{6} - \frac{21142}{77519} a^{4} - \frac{6013}{155038} a^{2} - \frac{1241}{77519}$, $\frac{1}{34470048460276} a^{37} - \frac{83}{17235024230138} a^{33} - \frac{1381}{1013824954714} a^{31} - \frac{20848}{46082952487} a^{29} - \frac{33521}{46082952487} a^{27} - \frac{79873}{184331809948} a^{25} + \frac{14635}{2710761911} a^{23} - \frac{4935}{492865802} a^{21} + \frac{109}{1115081} a^{19} - \frac{2127}{18956377} a^{17} + \frac{2967}{1115081} a^{15} + \frac{20960}{14496053} a^{13} + \frac{18012}{14496053} a^{11} + \frac{329}{77519} a^{9} + \frac{87643}{310076} a^{7} - \frac{21142}{77519} a^{5} - \frac{6013}{155038} a^{3} - \frac{1241}{77519} a$, $\frac{1}{4484539813932127119572697843960609478996} a^{38} - \frac{24995166823751829520736029}{4484539813932127119572697843960609478996} a^{36} - \frac{19605476159586316298096297}{4484539813932127119572697843960609478996} a^{34} - \frac{23359469919010911280734888169}{4484539813932127119572697843960609478996} a^{32} - \frac{149175836110756650248135645553}{131898229821533150575667583645900278794} a^{30} + \frac{7825379983630036578751428355947}{11990748165593922779606143967809116254} a^{28} + \frac{4422514943591019482791761177201}{23981496331187845559212287935618232508} a^{26} + \frac{1761387892034528235467616610387}{2180136030107985959928389812328930228} a^{24} + \frac{9249432598862216927117752472525}{1410676254775755621130134584448131324} a^{22} + \frac{16797386992347880824571475442135}{1410676254775755621130134584448131324} a^{20} - \frac{4470884999512796577498117559204}{32060823972176264116593967828366621} a^{18} - \frac{371285137410589839381198279237}{2914620361106933101508542529851511} a^{16} - \frac{2081930667068594218936508584579}{1885930821892721418623174578139213} a^{14} - \frac{4859546773033670420846746908528}{1885930821892721418623174578139213} a^{12} + \frac{3402599421557854997530640402860}{1885930821892721418623174578139213} a^{10} - \frac{561138175135536942184679557205}{685793026142807788590245301141532} a^{8} + \frac{5183737359567758263626583639209}{40340766243694575799426194184796} a^{6} + \frac{8609168483631995714243731976233}{40340766243694575799426194184796} a^{4} + \frac{17167558226612650992979367513255}{40340766243694575799426194184796} a^{2} + \frac{4421903488907584006490327320628}{10085191560923643949856548546199}$, $\frac{1}{4484539813932127119572697843960609478996} a^{39} - \frac{24995166823751829520736029}{4484539813932127119572697843960609478996} a^{37} - \frac{19605476159586316298096297}{4484539813932127119572697843960609478996} a^{35} - \frac{23359469919010911280734888169}{4484539813932127119572697843960609478996} a^{33} - \frac{149175836110756650248135645553}{131898229821533150575667583645900278794} a^{31} + \frac{7825379983630036578751428355947}{11990748165593922779606143967809116254} a^{29} + \frac{4422514943591019482791761177201}{23981496331187845559212287935618232508} a^{27} + \frac{1761387892034528235467616610387}{2180136030107985959928389812328930228} a^{25} + \frac{9249432598862216927117752472525}{1410676254775755621130134584448131324} a^{23} + \frac{16797386992347880824571475442135}{1410676254775755621130134584448131324} a^{21} - \frac{4470884999512796577498117559204}{32060823972176264116593967828366621} a^{19} - \frac{371285137410589839381198279237}{2914620361106933101508542529851511} a^{17} - \frac{2081930667068594218936508584579}{1885930821892721418623174578139213} a^{15} - \frac{4859546773033670420846746908528}{1885930821892721418623174578139213} a^{13} + \frac{3402599421557854997530640402860}{1885930821892721418623174578139213} a^{11} - \frac{561138175135536942184679557205}{685793026142807788590245301141532} a^{9} + \frac{5183737359567758263626583639209}{40340766243694575799426194184796} a^{7} + \frac{8609168483631995714243731976233}{40340766243694575799426194184796} a^{5} + \frac{17167558226612650992979367513255}{40340766243694575799426194184796} a^{3} + \frac{4421903488907584006490327320628}{10085191560923643949856548546199} a$
Class group and class number
Not computed
Unit group
| Rank: | $39$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 40 |
| The 40 conjugacy class representatives for $C_{40}$ |
| Character table for $C_{40}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{11})^+\), 8.8.1537988738916608.1, 10.10.304358957700017.1, 20.20.131527565972137936816816034072938673.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $40$ | $40$ | $40$ | R | ${\href{/LocalNumberField/13.5.0.1}{5} }^{8}$ | R | $20^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{5}$ | $40$ | $40$ | $40$ | $40$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{10}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{8}$ | $20^{2}$ | $20^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 11 | Data not computed | ||||||
| 17 | Data not computed | ||||||