Properties

Label 40.40.3247321025...0000.1
Degree $40$
Signature $[40, 0]$
Discriminant $2^{40}\cdot 3^{20}\cdot 5^{70}$
Root discriminant $57.91$
Ramified primes $2, 3, 5$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_2\times C_{20}$ (as 40T2)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, -200, 0, 9150, 0, -144655, 0, 1106455, 0, -4952883, 0, 14438100, 0, -29279950, 0, 43139880, 0, -47552155, 0, 39996264, 0, -25995750, 0, 13144625, 0, -5177835, 0, 1582210, 0, -371007, 0, 65450, 0, -8400, 0, 740, 0, -40, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^40 - 40*x^38 + 740*x^36 - 8400*x^34 + 65450*x^32 - 371007*x^30 + 1582210*x^28 - 5177835*x^26 + 13144625*x^24 - 25995750*x^22 + 39996264*x^20 - 47552155*x^18 + 43139880*x^16 - 29279950*x^14 + 14438100*x^12 - 4952883*x^10 + 1106455*x^8 - 144655*x^6 + 9150*x^4 - 200*x^2 + 1)
 
gp: K = bnfinit(x^40 - 40*x^38 + 740*x^36 - 8400*x^34 + 65450*x^32 - 371007*x^30 + 1582210*x^28 - 5177835*x^26 + 13144625*x^24 - 25995750*x^22 + 39996264*x^20 - 47552155*x^18 + 43139880*x^16 - 29279950*x^14 + 14438100*x^12 - 4952883*x^10 + 1106455*x^8 - 144655*x^6 + 9150*x^4 - 200*x^2 + 1, 1)
 

Normalized defining polynomial

\( x^{40} - 40 x^{38} + 740 x^{36} - 8400 x^{34} + 65450 x^{32} - 371007 x^{30} + 1582210 x^{28} - 5177835 x^{26} + 13144625 x^{24} - 25995750 x^{22} + 39996264 x^{20} - 47552155 x^{18} + 43139880 x^{16} - 29279950 x^{14} + 14438100 x^{12} - 4952883 x^{10} + 1106455 x^{8} - 144655 x^{6} + 9150 x^{4} - 200 x^{2} + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $40$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[40, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(32473210254684090614318847656250000000000000000000000000000000000000000=2^{40}\cdot 3^{20}\cdot 5^{70}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $57.91$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(300=2^{2}\cdot 3\cdot 5^{2}\)
Dirichlet character group:    $\lbrace$$\chi_{300}(1,·)$, $\chi_{300}(131,·)$, $\chi_{300}(7,·)$, $\chi_{300}(137,·)$, $\chi_{300}(11,·)$, $\chi_{300}(17,·)$, $\chi_{300}(283,·)$, $\chi_{300}(289,·)$, $\chi_{300}(191,·)$, $\chi_{300}(163,·)$, $\chi_{300}(293,·)$, $\chi_{300}(113,·)$, $\chi_{300}(169,·)$, $\chi_{300}(299,·)$, $\chi_{300}(257,·)$, $\chi_{300}(173,·)$, $\chi_{300}(49,·)$, $\chi_{300}(179,·)$, $\chi_{300}(181,·)$, $\chi_{300}(59,·)$, $\chi_{300}(61,·)$, $\chi_{300}(53,·)$, $\chi_{300}(67,·)$, $\chi_{300}(197,·)$, $\chi_{300}(71,·)$, $\chi_{300}(119,·)$, $\chi_{300}(77,·)$, $\chi_{300}(43,·)$, $\chi_{300}(223,·)$, $\chi_{300}(187,·)$, $\chi_{300}(229,·)$, $\chi_{300}(103,·)$, $\chi_{300}(233,·)$, $\chi_{300}(109,·)$, $\chi_{300}(239,·)$, $\chi_{300}(241,·)$, $\chi_{300}(247,·)$, $\chi_{300}(121,·)$, $\chi_{300}(251,·)$, $\chi_{300}(127,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$, $a^{37}$, $a^{38}$, $a^{39}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $39$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 31857175264724490000000 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_{20}$ (as 40T2):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 40
The 40 conjugacy class representatives for $C_2\times C_{20}$
Character table for $C_2\times C_{20}$ is not computed

Intermediate fields

\(\Q(\sqrt{3}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{15}) \), \(\Q(\sqrt{3}, \sqrt{5})\), \(\Q(\zeta_{20})^+\), \(\Q(\zeta_{15})^+\), 5.5.390625.1, \(\Q(\zeta_{60})^+\), 10.10.37968750000000000.1, \(\Q(\zeta_{25})^+\), 10.10.189843750000000000.1, 20.20.36040649414062500000000000000000000.1, \(\Q(\zeta_{100})^+\), \(\Q(\zeta_{75})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R ${\href{/LocalNumberField/7.4.0.1}{4} }^{10}$ ${\href{/LocalNumberField/11.10.0.1}{10} }^{4}$ $20^{2}$ $20^{2}$ ${\href{/LocalNumberField/19.10.0.1}{10} }^{4}$ $20^{2}$ ${\href{/LocalNumberField/29.10.0.1}{10} }^{4}$ ${\href{/LocalNumberField/31.10.0.1}{10} }^{4}$ $20^{2}$ ${\href{/LocalNumberField/41.10.0.1}{10} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{10}$ $20^{2}$ $20^{2}$ ${\href{/LocalNumberField/59.5.0.1}{5} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
3Data not computed
5Data not computed