Properties

Label 40.40.2760549293...1561.1
Degree $40$
Signature $[40, 0]$
Discriminant $3^{20}\cdot 41^{39}$
Root discriminant $64.72$
Ramified primes $3, 41$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_{40}$ (as 40T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 40, -40, -2830, 2830, 57153, -57153, -534108, 534108, 2816371, -2816371, -9367189, 9367189, 21091711, -21091711, -33734309, 33734309, 39635806, -39635806, -35021504, 35021504, 23637811, -23637811, -12299714, 12299714, 4950298, -4950298, -1536886, 1536886, 364530, -364530, -64822, 64822, 8363, -8363, -739, 739, 40, -40, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^40 - x^39 - 40*x^38 + 40*x^37 + 739*x^36 - 739*x^35 - 8363*x^34 + 8363*x^33 + 64822*x^32 - 64822*x^31 - 364530*x^30 + 364530*x^29 + 1536886*x^28 - 1536886*x^27 - 4950298*x^26 + 4950298*x^25 + 12299714*x^24 - 12299714*x^23 - 23637811*x^22 + 23637811*x^21 + 35021504*x^20 - 35021504*x^19 - 39635806*x^18 + 39635806*x^17 + 33734309*x^16 - 33734309*x^15 - 21091711*x^14 + 21091711*x^13 + 9367189*x^12 - 9367189*x^11 - 2816371*x^10 + 2816371*x^9 + 534108*x^8 - 534108*x^7 - 57153*x^6 + 57153*x^5 + 2830*x^4 - 2830*x^3 - 40*x^2 + 40*x + 1)
 
gp: K = bnfinit(x^40 - x^39 - 40*x^38 + 40*x^37 + 739*x^36 - 739*x^35 - 8363*x^34 + 8363*x^33 + 64822*x^32 - 64822*x^31 - 364530*x^30 + 364530*x^29 + 1536886*x^28 - 1536886*x^27 - 4950298*x^26 + 4950298*x^25 + 12299714*x^24 - 12299714*x^23 - 23637811*x^22 + 23637811*x^21 + 35021504*x^20 - 35021504*x^19 - 39635806*x^18 + 39635806*x^17 + 33734309*x^16 - 33734309*x^15 - 21091711*x^14 + 21091711*x^13 + 9367189*x^12 - 9367189*x^11 - 2816371*x^10 + 2816371*x^9 + 534108*x^8 - 534108*x^7 - 57153*x^6 + 57153*x^5 + 2830*x^4 - 2830*x^3 - 40*x^2 + 40*x + 1, 1)
 

Normalized defining polynomial

\( x^{40} - x^{39} - 40 x^{38} + 40 x^{37} + 739 x^{36} - 739 x^{35} - 8363 x^{34} + 8363 x^{33} + 64822 x^{32} - 64822 x^{31} - 364530 x^{30} + 364530 x^{29} + 1536886 x^{28} - 1536886 x^{27} - 4950298 x^{26} + 4950298 x^{25} + 12299714 x^{24} - 12299714 x^{23} - 23637811 x^{22} + 23637811 x^{21} + 35021504 x^{20} - 35021504 x^{19} - 39635806 x^{18} + 39635806 x^{17} + 33734309 x^{16} - 33734309 x^{15} - 21091711 x^{14} + 21091711 x^{13} + 9367189 x^{12} - 9367189 x^{11} - 2816371 x^{10} + 2816371 x^{9} + 534108 x^{8} - 534108 x^{7} - 57153 x^{6} + 57153 x^{5} + 2830 x^{4} - 2830 x^{3} - 40 x^{2} + 40 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $40$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[40, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(2760549293355133823580852196951954752012701839690650502926252551414931561=3^{20}\cdot 41^{39}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $64.72$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 41$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(123=3\cdot 41\)
Dirichlet character group:    $\lbrace$$\chi_{123}(1,·)$, $\chi_{123}(4,·)$, $\chi_{123}(10,·)$, $\chi_{123}(11,·)$, $\chi_{123}(14,·)$, $\chi_{123}(16,·)$, $\chi_{123}(17,·)$, $\chi_{123}(25,·)$, $\chi_{123}(26,·)$, $\chi_{123}(29,·)$, $\chi_{123}(31,·)$, $\chi_{123}(35,·)$, $\chi_{123}(37,·)$, $\chi_{123}(38,·)$, $\chi_{123}(40,·)$, $\chi_{123}(43,·)$, $\chi_{123}(44,·)$, $\chi_{123}(46,·)$, $\chi_{123}(47,·)$, $\chi_{123}(49,·)$, $\chi_{123}(53,·)$, $\chi_{123}(56,·)$, $\chi_{123}(61,·)$, $\chi_{123}(64,·)$, $\chi_{123}(65,·)$, $\chi_{123}(68,·)$, $\chi_{123}(71,·)$, $\chi_{123}(73,·)$, $\chi_{123}(89,·)$, $\chi_{123}(91,·)$, $\chi_{123}(95,·)$, $\chi_{123}(100,·)$, $\chi_{123}(101,·)$, $\chi_{123}(103,·)$, $\chi_{123}(104,·)$, $\chi_{123}(110,·)$, $\chi_{123}(115,·)$, $\chi_{123}(116,·)$, $\chi_{123}(118,·)$, $\chi_{123}(121,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$, $a^{37}$, $a^{38}$, $a^{39}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $39$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 317481165057225300000000 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{40}$ (as 40T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 40
The 40 conjugacy class representatives for $C_{40}$
Character table for $C_{40}$ is not computed

Intermediate fields

\(\Q(\sqrt{41}) \), 4.4.68921.1, 5.5.2825761.1, 8.8.15775096184361.1, 10.10.327381934393961.1, \(\Q(\zeta_{41})^+\)

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $20^{2}$ R $20^{2}$ $40$ $40$ $40$ $40$ $40$ ${\href{/LocalNumberField/23.5.0.1}{5} }^{8}$ $40$ ${\href{/LocalNumberField/31.10.0.1}{10} }^{4}$ ${\href{/LocalNumberField/37.5.0.1}{5} }^{8}$ R $20^{2}$ $40$ $40$ ${\href{/LocalNumberField/59.10.0.1}{10} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.8.4.2$x^{8} - 27 x^{2} + 162$$2$$4$$4$$C_8$$[\ ]_{2}^{4}$
3.8.4.2$x^{8} - 27 x^{2} + 162$$2$$4$$4$$C_8$$[\ ]_{2}^{4}$
3.8.4.2$x^{8} - 27 x^{2} + 162$$2$$4$$4$$C_8$$[\ ]_{2}^{4}$
3.8.4.2$x^{8} - 27 x^{2} + 162$$2$$4$$4$$C_8$$[\ ]_{2}^{4}$
3.8.4.2$x^{8} - 27 x^{2} + 162$$2$$4$$4$$C_8$$[\ ]_{2}^{4}$
41Data not computed