Normalized defining polynomial
\( x^{40} - 3 x^{39} - 153 x^{38} + 424 x^{37} + 10435 x^{36} - 26104 x^{35} - 422087 x^{34} + \cdots + 99452651 \)
Invariants
| Degree: | $40$ |
| |
| Signature: | $[40, 0]$ |
| |
| Discriminant: |
\(234\!\cdots\!625\)
\(\medspace = 5^{20}\cdot 11^{32}\cdot 17^{35}\)
|
| |
| Root discriminant: | \(181.65\) |
| |
| Galois root discriminant: | $5^{1/2}11^{4/5}17^{7/8}\approx 181.65274145300944$ | ||
| Ramified primes: |
\(5\), \(11\), \(17\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{17}) \) | ||
| $\Aut(K/\Q)$ $=$ $\Gal(K/\Q)$: | $C_{40}$ |
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(935=5\cdot 11\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{935}(256,·)$, $\chi_{935}(1,·)$, $\chi_{935}(389,·)$, $\chi_{935}(774,·)$, $\chi_{935}(9,·)$, $\chi_{935}(526,·)$, $\chi_{935}(399,·)$, $\chi_{935}(16,·)$, $\chi_{935}(529,·)$, $\chi_{935}(786,·)$, $\chi_{935}(531,·)$, $\chi_{935}(276,·)$, $\chi_{935}(676,·)$, $\chi_{935}(421,·)$, $\chi_{935}(166,·)$, $\chi_{935}(559,·)$, $\chi_{935}(49,·)$, $\chi_{935}(434,·)$, $\chi_{935}(179,·)$, $\chi_{935}(696,·)$, $\chi_{935}(441,·)$, $\chi_{935}(59,·)$, $\chi_{935}(444,·)$, $\chi_{935}(191,·)$, $\chi_{935}(81,·)$, $\chi_{935}(851,·)$, $\chi_{935}(654,·)$, $\chi_{935}(86,·)$, $\chi_{935}(729,·)$, $\chi_{935}(474,·)$, $\chi_{935}(859,·)$, $\chi_{935}(784,·)$, $\chi_{935}(356,·)$, $\chi_{935}(229,·)$, $\chi_{935}(614,·)$, $\chi_{935}(104,·)$, $\chi_{935}(361,·)$, $\chi_{935}(144,·)$, $\chi_{935}(251,·)$, $\chi_{935}(511,·)$$\rbrace$ | ||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $\frac{1}{13}a^{30}+\frac{1}{13}a^{29}+\frac{1}{13}a^{28}-\frac{3}{13}a^{27}+\frac{4}{13}a^{26}+\frac{5}{13}a^{25}-\frac{5}{13}a^{24}-\frac{3}{13}a^{23}+\frac{4}{13}a^{22}+\frac{1}{13}a^{21}+\frac{1}{13}a^{20}-\frac{2}{13}a^{18}+\frac{5}{13}a^{17}-\frac{2}{13}a^{16}+\frac{1}{13}a^{15}+\frac{6}{13}a^{14}-\frac{6}{13}a^{12}+\frac{3}{13}a^{11}-\frac{1}{13}a^{10}+\frac{6}{13}a^{9}+\frac{5}{13}a^{8}-\frac{6}{13}a^{7}-\frac{5}{13}a^{5}+\frac{6}{13}a^{4}+\frac{1}{13}a^{3}-\frac{2}{13}a^{2}+\frac{6}{13}a+\frac{3}{13}$, $\frac{1}{13}a^{31}-\frac{4}{13}a^{28}-\frac{6}{13}a^{27}+\frac{1}{13}a^{26}+\frac{3}{13}a^{25}+\frac{2}{13}a^{24}-\frac{6}{13}a^{23}-\frac{3}{13}a^{22}-\frac{1}{13}a^{20}-\frac{2}{13}a^{19}-\frac{6}{13}a^{18}+\frac{6}{13}a^{17}+\frac{3}{13}a^{16}+\frac{5}{13}a^{15}-\frac{6}{13}a^{14}-\frac{6}{13}a^{13}-\frac{4}{13}a^{12}-\frac{4}{13}a^{11}-\frac{6}{13}a^{10}-\frac{1}{13}a^{9}+\frac{2}{13}a^{8}+\frac{6}{13}a^{7}-\frac{5}{13}a^{6}-\frac{2}{13}a^{5}-\frac{5}{13}a^{4}-\frac{3}{13}a^{3}-\frac{5}{13}a^{2}-\frac{3}{13}a-\frac{3}{13}$, $\frac{1}{13}a^{32}-\frac{4}{13}a^{29}-\frac{6}{13}a^{28}+\frac{1}{13}a^{27}+\frac{3}{13}a^{26}+\frac{2}{13}a^{25}-\frac{6}{13}a^{24}-\frac{3}{13}a^{23}-\frac{1}{13}a^{21}-\frac{2}{13}a^{20}-\frac{6}{13}a^{19}+\frac{6}{13}a^{18}+\frac{3}{13}a^{17}+\frac{5}{13}a^{16}-\frac{6}{13}a^{15}-\frac{6}{13}a^{14}-\frac{4}{13}a^{13}-\frac{4}{13}a^{12}-\frac{6}{13}a^{11}-\frac{1}{13}a^{10}+\frac{2}{13}a^{9}+\frac{6}{13}a^{8}-\frac{5}{13}a^{7}-\frac{2}{13}a^{6}-\frac{5}{13}a^{5}-\frac{3}{13}a^{4}-\frac{5}{13}a^{3}-\frac{3}{13}a^{2}-\frac{3}{13}a$, $\frac{1}{13}a^{33}-\frac{2}{13}a^{29}+\frac{5}{13}a^{28}+\frac{4}{13}a^{27}+\frac{5}{13}a^{26}+\frac{1}{13}a^{25}+\frac{3}{13}a^{24}+\frac{1}{13}a^{23}+\frac{2}{13}a^{22}+\frac{2}{13}a^{21}-\frac{2}{13}a^{20}+\frac{6}{13}a^{19}-\frac{5}{13}a^{18}-\frac{1}{13}a^{17}-\frac{1}{13}a^{16}-\frac{2}{13}a^{15}-\frac{6}{13}a^{14}-\frac{4}{13}a^{13}-\frac{4}{13}a^{12}-\frac{2}{13}a^{11}-\frac{2}{13}a^{10}+\frac{4}{13}a^{9}+\frac{2}{13}a^{8}-\frac{5}{13}a^{6}+\frac{3}{13}a^{5}+\frac{6}{13}a^{4}+\frac{1}{13}a^{3}+\frac{2}{13}a^{2}-\frac{2}{13}a-\frac{1}{13}$, $\frac{1}{13}a^{34}-\frac{6}{13}a^{29}+\frac{6}{13}a^{28}-\frac{1}{13}a^{27}-\frac{4}{13}a^{26}+\frac{4}{13}a^{24}-\frac{4}{13}a^{23}-\frac{3}{13}a^{22}-\frac{5}{13}a^{20}-\frac{5}{13}a^{19}-\frac{5}{13}a^{18}-\frac{4}{13}a^{17}-\frac{6}{13}a^{16}-\frac{4}{13}a^{15}-\frac{5}{13}a^{14}-\frac{4}{13}a^{13}-\frac{1}{13}a^{12}+\frac{4}{13}a^{11}+\frac{2}{13}a^{10}+\frac{1}{13}a^{9}-\frac{3}{13}a^{8}-\frac{4}{13}a^{7}+\frac{3}{13}a^{6}-\frac{4}{13}a^{5}+\frac{4}{13}a^{3}-\frac{6}{13}a^{2}-\frac{2}{13}a+\frac{6}{13}$, $\frac{1}{611}a^{35}-\frac{6}{611}a^{34}-\frac{12}{611}a^{33}-\frac{17}{611}a^{32}+\frac{16}{611}a^{31}-\frac{2}{611}a^{30}+\frac{1}{13}a^{29}+\frac{23}{611}a^{28}+\frac{76}{611}a^{27}+\frac{166}{611}a^{26}+\frac{3}{47}a^{25}-\frac{171}{611}a^{24}-\frac{113}{611}a^{23}+\frac{261}{611}a^{22}+\frac{70}{611}a^{21}-\frac{46}{611}a^{20}+\frac{23}{611}a^{19}+\frac{88}{611}a^{18}-\frac{35}{611}a^{17}-\frac{131}{611}a^{16}+\frac{99}{611}a^{15}-\frac{288}{611}a^{14}-\frac{126}{611}a^{13}-\frac{144}{611}a^{12}-\frac{2}{47}a^{11}-\frac{96}{611}a^{10}-\frac{304}{611}a^{9}-\frac{112}{611}a^{8}-\frac{115}{611}a^{7}+\frac{187}{611}a^{6}+\frac{8}{611}a^{5}+\frac{96}{611}a^{4}+\frac{25}{611}a^{3}-\frac{92}{611}a^{2}-\frac{48}{611}a+\frac{122}{611}$, $\frac{1}{611}a^{36}-\frac{1}{611}a^{34}+\frac{5}{611}a^{33}+\frac{8}{611}a^{32}-\frac{12}{611}a^{30}+\frac{23}{611}a^{29}+\frac{120}{611}a^{28}-\frac{83}{611}a^{27}+\frac{95}{611}a^{26}-\frac{172}{611}a^{25}+\frac{36}{611}a^{24}-\frac{88}{611}a^{23}-\frac{56}{611}a^{22}-\frac{190}{611}a^{21}-\frac{206}{611}a^{20}+\frac{179}{611}a^{19}-\frac{212}{611}a^{18}+\frac{82}{611}a^{17}-\frac{170}{611}a^{16}+\frac{71}{611}a^{15}+\frac{120}{611}a^{14}-\frac{54}{611}a^{13}+\frac{191}{611}a^{12}+\frac{30}{611}a^{11}+\frac{154}{611}a^{10}-\frac{291}{611}a^{9}+\frac{12}{611}a^{8}-\frac{17}{47}a^{7}-\frac{139}{611}a^{6}+\frac{191}{611}a^{5}-\frac{151}{611}a^{4}+\frac{105}{611}a^{3}+\frac{199}{611}a^{2}-\frac{119}{611}a-\frac{161}{611}$, $\frac{1}{611}a^{37}-\frac{1}{611}a^{34}-\frac{4}{611}a^{33}-\frac{17}{611}a^{32}+\frac{4}{611}a^{31}+\frac{21}{611}a^{30}+\frac{167}{611}a^{29}-\frac{60}{611}a^{28}+\frac{171}{611}a^{27}-\frac{6}{611}a^{26}+\frac{75}{611}a^{25}-\frac{259}{611}a^{24}-\frac{13}{47}a^{23}+\frac{71}{611}a^{22}-\frac{136}{611}a^{21}+\frac{133}{611}a^{20}-\frac{189}{611}a^{19}+\frac{170}{611}a^{18}-\frac{205}{611}a^{17}-\frac{60}{611}a^{16}+\frac{219}{611}a^{15}+\frac{269}{611}a^{14}+\frac{5}{47}a^{13}-\frac{114}{611}a^{12}+\frac{128}{611}a^{11}+\frac{224}{611}a^{10}-\frac{292}{611}a^{9}+\frac{278}{611}a^{8}-\frac{254}{611}a^{7}-\frac{233}{611}a^{6}-\frac{11}{47}a^{5}+\frac{201}{611}a^{4}+\frac{224}{611}a^{3}-\frac{211}{611}a^{2}-\frac{209}{611}a+\frac{122}{611}$, $\frac{1}{611}a^{38}-\frac{10}{611}a^{34}+\frac{18}{611}a^{33}-\frac{1}{47}a^{32}-\frac{10}{611}a^{31}-\frac{23}{611}a^{30}-\frac{295}{611}a^{29}-\frac{14}{47}a^{28}-\frac{118}{611}a^{27}+\frac{288}{611}a^{26}-\frac{32}{611}a^{25}+\frac{36}{611}a^{24}+\frac{240}{611}a^{23}+\frac{219}{611}a^{22}+\frac{109}{611}a^{21}+\frac{3}{13}a^{20}-\frac{42}{611}a^{19}-\frac{305}{611}a^{18}-\frac{142}{611}a^{17}+\frac{276}{611}a^{16}-\frac{149}{611}a^{15}-\frac{129}{611}a^{14}-\frac{146}{611}a^{13}-\frac{110}{611}a^{12}-\frac{272}{611}a^{11}-\frac{12}{611}a^{10}+\frac{303}{611}a^{9}-\frac{84}{611}a^{8}-\frac{113}{611}a^{7}+\frac{44}{611}a^{6}+\frac{162}{611}a^{5}-\frac{291}{611}a^{4}-\frac{186}{611}a^{3}-\frac{207}{611}a^{2}+\frac{215}{611}a+\frac{263}{611}$, $\frac{1}{19\cdots 19}a^{39}-\frac{82\cdots 71}{19\cdots 19}a^{38}+\frac{19\cdots 19}{19\cdots 19}a^{37}-\frac{38\cdots 08}{19\cdots 19}a^{36}+\frac{98\cdots 39}{19\cdots 19}a^{35}+\frac{34\cdots 60}{19\cdots 19}a^{34}-\frac{64\cdots 80}{19\cdots 19}a^{33}+\frac{74\cdots 00}{19\cdots 19}a^{32}+\frac{62\cdots 31}{15\cdots 63}a^{31}+\frac{15\cdots 78}{19\cdots 19}a^{30}+\frac{51\cdots 34}{19\cdots 19}a^{29}-\frac{78\cdots 70}{19\cdots 19}a^{28}-\frac{82\cdots 73}{19\cdots 19}a^{27}-\frac{14\cdots 33}{19\cdots 19}a^{26}+\frac{86\cdots 36}{19\cdots 19}a^{25}+\frac{19\cdots 70}{19\cdots 19}a^{24}+\frac{90\cdots 79}{19\cdots 19}a^{23}+\frac{53\cdots 88}{19\cdots 19}a^{22}-\frac{30\cdots 43}{19\cdots 19}a^{21}+\frac{23\cdots 36}{19\cdots 19}a^{20}-\frac{70\cdots 41}{19\cdots 19}a^{19}+\frac{31\cdots 03}{19\cdots 19}a^{18}+\frac{66\cdots 43}{19\cdots 19}a^{17}-\frac{76\cdots 73}{19\cdots 19}a^{16}-\frac{23\cdots 14}{19\cdots 19}a^{15}+\frac{22\cdots 21}{19\cdots 19}a^{14}+\frac{67\cdots 39}{19\cdots 19}a^{13}+\frac{65\cdots 86}{19\cdots 19}a^{12}+\frac{83\cdots 43}{19\cdots 19}a^{11}+\frac{75\cdots 27}{19\cdots 19}a^{10}-\frac{69\cdots 90}{19\cdots 19}a^{9}-\frac{29\cdots 65}{19\cdots 19}a^{8}+\frac{46\cdots 94}{15\cdots 63}a^{7}-\frac{21\cdots 48}{19\cdots 19}a^{6}-\frac{47\cdots 78}{19\cdots 19}a^{5}+\frac{29\cdots 26}{19\cdots 19}a^{4}+\frac{45\cdots 62}{19\cdots 19}a^{3}-\frac{96\cdots 16}{19\cdots 19}a^{2}+\frac{25\cdots 38}{15\cdots 63}a-\frac{35\cdots 26}{19\cdots 19}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | not computed |
| |
| Narrow class group: | not computed |
|
Unit group
| Rank: | $39$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: | not computed |
| |
| Regulator: | not computed |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr = \mathstrut &\frac{2^{40}\cdot(2\pi)^{0}\cdot R \cdot h}{2\cdot\sqrt{2342492774810879590625564693377242840437133595865567669360927718694362835612583160400390625}}\cr\mathstrut & \text{
Galois group
| A cyclic group of order 40 |
| The 40 conjugacy class representatives for $C_{40}$ |
| Character table for $C_{40}$ |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{11})^+\), 8.8.256461670625.1, 10.10.304358957700017.1, 20.20.131527565972137936816816034072938673.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20^{2}$ | $40$ | R | $40$ | R | ${\href{/padicField/13.5.0.1}{5} }^{8}$ | R | $20^{2}$ | ${\href{/padicField/23.8.0.1}{8} }^{5}$ | $40$ | $40$ | $40$ | $40$ | ${\href{/padicField/43.4.0.1}{4} }^{10}$ | ${\href{/padicField/47.5.0.1}{5} }^{8}$ | $20^{2}$ | $20^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(5\)
| Deg $40$ | $2$ | $20$ | $20$ | |||
|
\(11\)
| Deg $40$ | $5$ | $8$ | $32$ | |||
|
\(17\)
| Deg $40$ | $8$ | $5$ | $35$ |