Normalized defining polynomial
\( x^{40} - x^{39} - 58 x^{38} + 53 x^{37} + 1486 x^{36} - 1226 x^{35} - 22237 x^{34} + 16342 x^{33} + 216813 x^{32} - 139848 x^{31} - 1457140 x^{30} + 812165 x^{29} + 6977251 x^{28} - 3307776 x^{27} - 24306985 x^{26} + 9650330 x^{25} + 62453182 x^{24} - 20449687 x^{23} - 119327033 x^{22} + 31725068 x^{21} + 170133237 x^{20} - 36107412 x^{19} - 180748378 x^{18} + 30022768 x^{17} + 142090232 x^{16} - 18029877 x^{15} - 81534233 x^{14} + 7661653 x^{13} + 33400952 x^{12} - 2229292 x^{11} - 9440783 x^{10} + 421058 x^{9} + 1747746 x^{8} - 46431 x^{7} - 195228 x^{6} + 2013 x^{5} + 11440 x^{4} + 110 x^{3} - 265 x^{2} - 10 x + 1 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $\frac{1}{3} a^{36} + \frac{1}{3} a^{35} + \frac{1}{3} a^{34} - \frac{1}{3} a^{33} - \frac{1}{3} a^{32} - \frac{1}{3} a^{31} + \frac{1}{3} a^{30} - \frac{1}{3} a^{27} - \frac{1}{3} a^{26} - \frac{1}{3} a^{21} - \frac{1}{3} a^{20} - \frac{1}{3} a^{17} - \frac{1}{3} a^{16} + \frac{1}{3} a^{15} + \frac{1}{3} a^{13} - \frac{1}{3} a^{11} + \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{37} + \frac{1}{3} a^{34} - \frac{1}{3} a^{31} - \frac{1}{3} a^{30} - \frac{1}{3} a^{28} + \frac{1}{3} a^{26} - \frac{1}{3} a^{22} + \frac{1}{3} a^{20} - \frac{1}{3} a^{18} - \frac{1}{3} a^{16} - \frac{1}{3} a^{15} + \frac{1}{3} a^{14} - \frac{1}{3} a^{13} - \frac{1}{3} a^{12} + \frac{1}{3} a^{11} + \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{38} + \frac{1}{3} a^{35} - \frac{1}{3} a^{32} - \frac{1}{3} a^{31} - \frac{1}{3} a^{29} + \frac{1}{3} a^{27} - \frac{1}{3} a^{23} + \frac{1}{3} a^{21} - \frac{1}{3} a^{19} - \frac{1}{3} a^{17} - \frac{1}{3} a^{16} + \frac{1}{3} a^{15} - \frac{1}{3} a^{14} - \frac{1}{3} a^{13} + \frac{1}{3} a^{12} + \frac{1}{3} a^{10} + \frac{1}{3} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{24141888550627664381631014573417267430879761921726462110608265027922280027} a^{39} + \frac{699737603380849059257082763813307893634924164857872817429122128582508892}{8047296183542554793877004857805755810293253973908820703536088342640760009} a^{38} + \frac{415828203431548072655005384760644843589700657128826265981773258102126775}{8047296183542554793877004857805755810293253973908820703536088342640760009} a^{37} + \frac{2918923394682604629321948939197551240255516609695783277379280737384859829}{24141888550627664381631014573417267430879761921726462110608265027922280027} a^{36} - \frac{1142190940453762004562044418919723423405650124479190365300647447039168918}{8047296183542554793877004857805755810293253973908820703536088342640760009} a^{35} - \frac{3619007268490704376705135627411626126819615467051570008975598847574164944}{8047296183542554793877004857805755810293253973908820703536088342640760009} a^{34} - \frac{3463660624004406654672838019809263066380756060198473491924180679690441873}{24141888550627664381631014573417267430879761921726462110608265027922280027} a^{33} - \frac{10554908718567827276729063152304661688143588611691677868523238386319966530}{24141888550627664381631014573417267430879761921726462110608265027922280027} a^{32} + \frac{1889619049370121667252046887860706796080098980564287471532250709046736130}{8047296183542554793877004857805755810293253973908820703536088342640760009} a^{31} + \frac{8679994935829972311326731773000090966731170259710738954474689722048785868}{24141888550627664381631014573417267430879761921726462110608265027922280027} a^{30} - \frac{2381119804611472944555618067966644690715874475688368056370306303406214574}{8047296183542554793877004857805755810293253973908820703536088342640760009} a^{29} + \frac{3087729766381928419021549429355821539352901554101356805866330629077914617}{24141888550627664381631014573417267430879761921726462110608265027922280027} a^{28} + \frac{426735288052015872665611366059192203116060523297538907699375128270013358}{8047296183542554793877004857805755810293253973908820703536088342640760009} a^{27} + \frac{1024373795124671958434148553546062724151539055578049691893760476157258591}{8047296183542554793877004857805755810293253973908820703536088342640760009} a^{26} + \frac{931681467965556819586808263064509665032279075898435730886737745122576932}{8047296183542554793877004857805755810293253973908820703536088342640760009} a^{25} - \frac{11664899279519164719944723242348671508314174710136145549580506996094487625}{24141888550627664381631014573417267430879761921726462110608265027922280027} a^{24} + \frac{2120800060005888592689273483673811821687421593084491695310900757954566104}{8047296183542554793877004857805755810293253973908820703536088342640760009} a^{23} + \frac{1429955430259161865838444190327071178635466341789394285175570856913898150}{24141888550627664381631014573417267430879761921726462110608265027922280027} a^{22} + \frac{636833073340683523144832846423842875190279636140029661201437344896244365}{8047296183542554793877004857805755810293253973908820703536088342640760009} a^{21} + \frac{10047605057601433955543210933937267500968490042760562425525561871486766423}{24141888550627664381631014573417267430879761921726462110608265027922280027} a^{20} - \frac{1740198787615119831100107626337392531536647368347673830856576708649564045}{8047296183542554793877004857805755810293253973908820703536088342640760009} a^{19} + \frac{9474558142126520176670280930283748118246288947141303120652765008648658683}{24141888550627664381631014573417267430879761921726462110608265027922280027} a^{18} - \frac{4951446143969652299830980794556435255192474695491200030191569236445356787}{24141888550627664381631014573417267430879761921726462110608265027922280027} a^{17} + \frac{3385093048216223207178213982347179380142231513760978120463221575451969709}{24141888550627664381631014573417267430879761921726462110608265027922280027} a^{16} + \frac{11952712543991263928425832208166584364393607276457563541267977003470469231}{24141888550627664381631014573417267430879761921726462110608265027922280027} a^{15} - \frac{94864744702096178233585547598394305636744396774858140515300838558112661}{24141888550627664381631014573417267430879761921726462110608265027922280027} a^{14} - \frac{10802217372826453684820414969579906984919686333484037344895725713645236295}{24141888550627664381631014573417267430879761921726462110608265027922280027} a^{13} + \frac{2252029203136628338171289941274202744852547151438387339959099118388823720}{8047296183542554793877004857805755810293253973908820703536088342640760009} a^{12} - \frac{4274023019608422152570119028464199810169862442328689975765174509807595987}{24141888550627664381631014573417267430879761921726462110608265027922280027} a^{11} - \frac{11163830194030278570011653942938072920711907846984246681493687577330393495}{24141888550627664381631014573417267430879761921726462110608265027922280027} a^{10} + \frac{1070299271346457613450645849581256920236131597814953852804207613396677380}{8047296183542554793877004857805755810293253973908820703536088342640760009} a^{9} - \frac{7843715949789323952943922604799391609207046679079024913602752938353794282}{24141888550627664381631014573417267430879761921726462110608265027922280027} a^{8} + \frac{1068544202389032622854053854732415962978360173410150210255575795047169064}{24141888550627664381631014573417267430879761921726462110608265027922280027} a^{7} + \frac{3877588956058056975245315324995975542426647107970324516938679852016791781}{8047296183542554793877004857805755810293253973908820703536088342640760009} a^{6} - \frac{11396933653690351787659290770138849693496471548723409722317378857258895876}{24141888550627664381631014573417267430879761921726462110608265027922280027} a^{5} + \frac{3416569450862388256965304026889304515369169425178763814259141867725358083}{24141888550627664381631014573417267430879761921726462110608265027922280027} a^{4} + \frac{11370865765840305084537906266933510921086120427079879438712990086280385791}{24141888550627664381631014573417267430879761921726462110608265027922280027} a^{3} - \frac{10163306294544622358974664704102950410407961780205707606421492594688407712}{24141888550627664381631014573417267430879761921726462110608265027922280027} a^{2} - \frac{1243209794320167700983826409992272332263072349716280337743126650675149981}{8047296183542554793877004857805755810293253973908820703536088342640760009} a + \frac{2184764658194532951872003421543246986530884480569480933282779749450848473}{8047296183542554793877004857805755810293253973908820703536088342640760009}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $39$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10069514429260745000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{20}$ (as 40T2):
| An abelian group of order 40 |
| The 40 conjugacy class representatives for $C_2\times C_{20}$ |
| Character table for $C_2\times C_{20}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{10}$ | R | $20^{2}$ | $20^{2}$ | $20^{2}$ | $20^{2}$ | $20^{2}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{4}$ | $20^{2}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{8}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{4}$ | R | ${\href{/LocalNumberField/43.10.0.1}{10} }^{4}$ | $20^{2}$ | $20^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 41 | Data not computed | ||||||