Normalized defining polynomial
\( x^{40} - 160 x^{38} + 10400 x^{36} - 362000 x^{34} + 7514000 x^{32} - 98237040 x^{30} + 837321800 x^{28} - 4787672000 x^{26} + 18826410000 x^{24} - 51916276000 x^{22} + 101730962000 x^{20} - 142586040000 x^{18} + 142941685000 x^{16} - 101779400000 x^{14} + 50709240000 x^{12} - 17243312000 x^{10} + 3851460000 x^{8} - 533600000 x^{6} + 42000000 x^{4} - 1600000 x^{2} + 20000 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{10} a^{10}$, $\frac{1}{10} a^{11}$, $\frac{1}{10} a^{12}$, $\frac{1}{10} a^{13}$, $\frac{1}{10} a^{14}$, $\frac{1}{10} a^{15}$, $\frac{1}{20} a^{16}$, $\frac{1}{20} a^{17}$, $\frac{1}{20} a^{18}$, $\frac{1}{20} a^{19}$, $\frac{1}{100} a^{20}$, $\frac{1}{100} a^{21}$, $\frac{1}{100} a^{22}$, $\frac{1}{100} a^{23}$, $\frac{1}{1400} a^{24} + \frac{1}{140} a^{18} - \frac{1}{70} a^{12} + \frac{1}{7} a^{6} + \frac{2}{7}$, $\frac{1}{1400} a^{25} + \frac{1}{140} a^{19} - \frac{1}{70} a^{13} + \frac{1}{7} a^{7} + \frac{2}{7} a$, $\frac{1}{1400} a^{26} - \frac{1}{350} a^{20} - \frac{1}{70} a^{14} + \frac{1}{7} a^{8} + \frac{2}{7} a^{2}$, $\frac{1}{1400} a^{27} - \frac{1}{350} a^{21} - \frac{1}{70} a^{15} + \frac{1}{7} a^{9} + \frac{2}{7} a^{3}$, $\frac{1}{1400} a^{28} - \frac{1}{350} a^{22} - \frac{1}{70} a^{16} + \frac{3}{70} a^{10} + \frac{2}{7} a^{4}$, $\frac{1}{1400} a^{29} - \frac{1}{350} a^{23} - \frac{1}{70} a^{17} + \frac{3}{70} a^{11} + \frac{2}{7} a^{5}$, $\frac{1}{7000} a^{30} - \frac{1}{140} a^{18} - \frac{3}{70} a^{12} - \frac{3}{7} a^{6} + \frac{3}{7}$, $\frac{1}{7000} a^{31} - \frac{1}{140} a^{19} - \frac{3}{70} a^{13} - \frac{3}{7} a^{7} + \frac{3}{7} a$, $\frac{1}{98000} a^{32} + \frac{1}{24500} a^{30} - \frac{3}{9800} a^{28} - \frac{3}{9800} a^{26} + \frac{1}{4900} a^{24} + \frac{3}{2450} a^{22} + \frac{3}{700} a^{20} + \frac{3}{140} a^{18} + \frac{13}{980} a^{16} - \frac{1}{245} a^{14} - \frac{11}{245} a^{12} - \frac{8}{245} a^{10} - \frac{23}{98} a^{8} + \frac{17}{49} a^{6} - \frac{20}{49} a^{4} - \frac{1}{49} a^{2} + \frac{24}{49}$, $\frac{1}{98000} a^{33} + \frac{1}{24500} a^{31} - \frac{3}{9800} a^{29} - \frac{3}{9800} a^{27} + \frac{1}{4900} a^{25} + \frac{3}{2450} a^{23} + \frac{3}{700} a^{21} + \frac{3}{140} a^{19} + \frac{13}{980} a^{17} - \frac{1}{245} a^{15} - \frac{11}{245} a^{13} - \frac{8}{245} a^{11} - \frac{23}{98} a^{9} + \frac{17}{49} a^{7} - \frac{20}{49} a^{5} - \frac{1}{49} a^{3} + \frac{24}{49} a$, $\frac{1}{98000} a^{34} - \frac{1}{24500} a^{30} + \frac{1}{4900} a^{28} - \frac{3}{9800} a^{24} + \frac{11}{4900} a^{22} - \frac{1}{980} a^{18} + \frac{1}{140} a^{16} + \frac{8}{245} a^{12} - \frac{23}{490} a^{10} - \frac{11}{49} a^{6} + \frac{16}{49} a^{4} + \frac{2}{49}$, $\frac{1}{98000} a^{35} - \frac{1}{24500} a^{31} + \frac{1}{4900} a^{29} - \frac{3}{9800} a^{25} + \frac{11}{4900} a^{23} - \frac{1}{980} a^{19} + \frac{1}{140} a^{17} + \frac{8}{245} a^{13} - \frac{23}{490} a^{11} - \frac{11}{49} a^{7} + \frac{16}{49} a^{5} + \frac{2}{49} a$, $\frac{1}{98000} a^{36} - \frac{3}{49000} a^{30} + \frac{1}{4900} a^{28} - \frac{1}{9800} a^{26} + \frac{1}{4900} a^{24} - \frac{1}{1225} a^{22} + \frac{1}{2450} a^{20} - \frac{1}{70} a^{18} + \frac{6}{245} a^{16} - \frac{3}{245} a^{14} - \frac{2}{49} a^{12} - \frac{11}{245} a^{10} + \frac{6}{49} a^{8} + \frac{3}{7} a^{6} - \frac{3}{49} a^{4} - \frac{23}{49} a^{2} - \frac{23}{49}$, $\frac{1}{98000} a^{37} - \frac{3}{49000} a^{31} + \frac{1}{4900} a^{29} - \frac{1}{9800} a^{27} + \frac{1}{4900} a^{25} - \frac{1}{1225} a^{23} + \frac{1}{2450} a^{21} - \frac{1}{70} a^{19} + \frac{6}{245} a^{17} - \frac{3}{245} a^{15} - \frac{2}{49} a^{13} - \frac{11}{245} a^{11} + \frac{6}{49} a^{9} + \frac{3}{7} a^{7} - \frac{3}{49} a^{5} - \frac{23}{49} a^{3} - \frac{23}{49} a$, $\frac{1}{809976464334936566961519608364684347803876156997361698000} a^{38} + \frac{2208645232687684888215703216463413179322544955964281}{809976464334936566961519608364684347803876156997361698000} a^{36} + \frac{121431595908544217033146672330235110951286965420511}{40498823216746828348075980418234217390193807849868084900} a^{34} + \frac{1070366754218253112110710175006830474514648331422561}{404988232167468283480759804182342173901938078498680849000} a^{32} - \frac{3156606959982909177206641146052209080228637619698174}{50623529020933535435094975522792771737742259812335106125} a^{30} - \frac{246867755848376218871669390506207963637519588942157}{826506596260139354042366947310902395718240976527920100} a^{28} + \frac{23584218697604485141520135784060745283880740063071811}{80997646433493656696151960836468434780387615699736169800} a^{26} - \frac{1061384348955290374779398530312566647284231335234523}{4049882321674682834807598041823421739019380784986808490} a^{24} + \frac{12293759095684017333717499377049539664432886739296303}{4049882321674682834807598041823421739019380784986808490} a^{22} - \frac{23443802013675753569423312806030637690935587848273071}{20249411608373414174037990209117108695096903924934042450} a^{20} - \frac{9780666980702413689142377921059956162872874095028939}{4049882321674682834807598041823421739019380784986808490} a^{18} + \frac{46783898708781411815280371617488474307880476595001582}{2024941160837341417403799020911710869509690392493404245} a^{16} - \frac{6267311111458814079900948929413210174008791286610949}{404988232167468283480759804182342173901938078498680849} a^{14} - \frac{54724244111117118535114517664317803454211885235729598}{2024941160837341417403799020911710869509690392493404245} a^{12} - \frac{20168509466836138978069178283294816285681039372930079}{809976464334936566961519608364684347803876156997361698} a^{10} + \frac{60508266049909428660242968643274857932820615107075169}{404988232167468283480759804182342173901938078498680849} a^{8} + \frac{53204888003631460865836138148726192544806365717876482}{404988232167468283480759804182342173901938078498680849} a^{6} + \frac{199203916554849983157204177888365105772791157320603443}{404988232167468283480759804182342173901938078498680849} a^{4} + \frac{49557492313790683048872750557724554151966964452628652}{404988232167468283480759804182342173901938078498680849} a^{2} + \frac{35578248843913480510698911334647213618649381700648866}{404988232167468283480759804182342173901938078498680849}$, $\frac{1}{809976464334936566961519608364684347803876156997361698000} a^{39} + \frac{2208645232687684888215703216463413179322544955964281}{809976464334936566961519608364684347803876156997361698000} a^{37} + \frac{121431595908544217033146672330235110951286965420511}{40498823216746828348075980418234217390193807849868084900} a^{35} + \frac{1070366754218253112110710175006830474514648331422561}{404988232167468283480759804182342173901938078498680849000} a^{33} - \frac{3156606959982909177206641146052209080228637619698174}{50623529020933535435094975522792771737742259812335106125} a^{31} - \frac{246867755848376218871669390506207963637519588942157}{826506596260139354042366947310902395718240976527920100} a^{29} + \frac{23584218697604485141520135784060745283880740063071811}{80997646433493656696151960836468434780387615699736169800} a^{27} - \frac{1061384348955290374779398530312566647284231335234523}{4049882321674682834807598041823421739019380784986808490} a^{25} + \frac{12293759095684017333717499377049539664432886739296303}{4049882321674682834807598041823421739019380784986808490} a^{23} - \frac{23443802013675753569423312806030637690935587848273071}{20249411608373414174037990209117108695096903924934042450} a^{21} - \frac{9780666980702413689142377921059956162872874095028939}{4049882321674682834807598041823421739019380784986808490} a^{19} + \frac{46783898708781411815280371617488474307880476595001582}{2024941160837341417403799020911710869509690392493404245} a^{17} - \frac{6267311111458814079900948929413210174008791286610949}{404988232167468283480759804182342173901938078498680849} a^{15} - \frac{54724244111117118535114517664317803454211885235729598}{2024941160837341417403799020911710869509690392493404245} a^{13} - \frac{20168509466836138978069178283294816285681039372930079}{809976464334936566961519608364684347803876156997361698} a^{11} + \frac{60508266049909428660242968643274857932820615107075169}{404988232167468283480759804182342173901938078498680849} a^{9} + \frac{53204888003631460865836138148726192544806365717876482}{404988232167468283480759804182342173901938078498680849} a^{7} + \frac{199203916554849983157204177888365105772791157320603443}{404988232167468283480759804182342173901938078498680849} a^{5} + \frac{49557492313790683048872750557724554151966964452628652}{404988232167468283480759804182342173901938078498680849} a^{3} + \frac{35578248843913480510698911334647213618649381700648866}{404988232167468283480759804182342173901938078498680849} a$
Class group and class number
Not computed
Unit group
| Rank: | $39$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 40 |
| The 40 conjugacy class representatives for $C_{40}$ |
| Character table for $C_{40}$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 5.5.390625.1, 8.8.1342177280000.1, 10.10.5000000000000000.1, 20.20.838860800000000000000000000000000000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $40$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{10}$ | $40$ | $40$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{8}$ | $40$ | $20^{2}$ | $40$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{8}$ | $40$ | $20^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{5}$ | ${\href{/LocalNumberField/47.5.0.1}{5} }^{8}$ | $40$ | $40$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||