magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, -480, 0, 17560, 0, -240976, 0, 1662386, 0, -6857500, 0, 18713229, 0, -35964944, 0, 50713585, 0, -53927016, 0, 44043506, 0, -27947920, 0, 13860054, 0, -5375528, 0, 1622694, 0, -376960, 0, 66044, 0, -8436, 0, 741, 0, -40, 0, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^40 - 40*x^38 + 741*x^36 - 8436*x^34 + 66044*x^32 - 376960*x^30 + 1622694*x^28 - 5375528*x^26 + 13860054*x^24 - 27947920*x^22 + 44043506*x^20 - 53927016*x^18 + 50713585*x^16 - 35964944*x^14 + 18713229*x^12 - 6857500*x^10 + 1662386*x^8 - 240976*x^6 + 17560*x^4 - 480*x^2 + 1)
gp: K = bnfinit(x^40 - 40*x^38 + 741*x^36 - 8436*x^34 + 66044*x^32 - 376960*x^30 + 1622694*x^28 - 5375528*x^26 + 13860054*x^24 - 27947920*x^22 + 44043506*x^20 - 53927016*x^18 + 50713585*x^16 - 35964944*x^14 + 18713229*x^12 - 6857500*x^10 + 1662386*x^8 - 240976*x^6 + 17560*x^4 - 480*x^2 + 1, 1)
\( x^{40} - 40 x^{38} + 741 x^{36} - 8436 x^{34} + 66044 x^{32} - 376960 x^{30} + 1622694 x^{28} - 5375528 x^{26} + 13860054 x^{24} - 27947920 x^{22} + 44043506 x^{20} - 53927016 x^{18} + 50713585 x^{16} - 35964944 x^{14} + 18713229 x^{12} - 6857500 x^{10} + 1662386 x^{8} - 240976 x^{6} + 17560 x^{4} - 480 x^{2} + 1 \)
magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
| Degree: | | $40$ |
|
| Signature: | | $[40, 0]$ |
|
| Discriminant: | | \(130305099804548492884220428175380349368393046678311823693003457545895936=2^{80}\cdot 3^{20}\cdot 11^{36}\) | magma: Discriminant(Integers(K));
|
| Root discriminant: | | $59.96$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
|
| Ramified primes: | | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
gp: factor(abs(K.disc))[,1]~
|
| This field is Galois and abelian over $\Q$. |
| Conductor: | | \(264=2^{3}\cdot 3\cdot 11\) |
| Dirichlet character group:
| |
$\lbrace$$\chi_{264}(1,·)$, $\chi_{264}(259,·)$, $\chi_{264}(133,·)$, $\chi_{264}(7,·)$, $\chi_{264}(139,·)$, $\chi_{264}(175,·)$, $\chi_{264}(17,·)$, $\chi_{264}(19,·)$, $\chi_{264}(149,·)$, $\chi_{264}(23,·)$, $\chi_{264}(25,·)$, $\chi_{264}(155,·)$, $\chi_{264}(29,·)$, $\chi_{264}(161,·)$, $\chi_{264}(37,·)$, $\chi_{264}(41,·)$, $\chi_{264}(43,·)$, $\chi_{264}(173,·)$, $\chi_{264}(47,·)$, $\chi_{264}(49,·)$, $\chi_{264}(179,·)$, $\chi_{264}(181,·)$, $\chi_{264}(59,·)$, $\chi_{264}(151,·)$, $\chi_{264}(191,·)$, $\chi_{264}(65,·)$, $\chi_{264}(197,·)$, $\chi_{264}(71,·)$, $\chi_{264}(203,·)$, $\chi_{264}(79,·)$, $\chi_{264}(211,·)$, $\chi_{264}(169,·)$, $\chi_{264}(101,·)$, $\chi_{264}(97,·)$, $\chi_{264}(229,·)$, $\chi_{264}(233,·)$, $\chi_{264}(157,·)$, $\chi_{264}(119,·)$, $\chi_{264}(251,·)$, $\chi_{264}(127,·)$$\rbrace$
|
| This is not a CM field. |
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$, $a^{37}$, $a^{38}$, $a^{39}$
Trivial group, which has order $1$
(assuming GRH)
sage: K.class_group().invariants()
magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
| Rank: | | $39$
|
|
| Torsion generator: | | \( -1 \) (order $2$)
| magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
|
| Fundamental units: | | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
(assuming GRH)
| magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
|
| Regulator: | | \( 73555688392588420000000 \)
(assuming GRH)
|
|
$C_2^2\times C_{10}$ (as 40T7):
sage: K.galois_group(type='pari')
|
\(\Q(\sqrt{22}) \), \(\Q(\sqrt{6}) \), \(\Q(\sqrt{33}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{11}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{66}) \), \(\Q(\sqrt{6}, \sqrt{22})\), \(\Q(\sqrt{2}, \sqrt{11})\), \(\Q(\sqrt{3}, \sqrt{22})\), \(\Q(\sqrt{2}, \sqrt{3})\), \(\Q(\sqrt{6}, \sqrt{11})\), \(\Q(\sqrt{2}, \sqrt{33})\), \(\Q(\sqrt{3}, \sqrt{11})\), \(\Q(\zeta_{11})^+\), 8.8.77720518656.1, 10.10.77265229938688.1, 10.10.1706859170463744.1, \(\Q(\zeta_{33})^+\), 10.10.7024111812608.1, \(\Q(\zeta_{44})^+\), 10.10.53339349076992.1, 10.10.18775450875101184.1, 20.20.352517555563337816067682238201856.2, \(\Q(\zeta_{88})^+\), 20.20.360977976896857923653306611918700544.1, 20.20.2983289065263288625233938941476864.1, 20.20.360977976896857923653306611918700544.2, 20.20.352517555563337816067682238201856.1, \(\Q(\zeta_{132})^+\)
|
Fields in the database are given up to isomorphism. Isomorphic
intermediate fields are shown with their multiplicities.
| $p$ |
2 |
3 |
5 |
7 |
11 |
13 |
17 |
19 |
23 |
29 |
31 |
37 |
41 |
43 |
47 |
53 |
59 |
| Cycle type |
R |
R |
${\href{/LocalNumberField/5.10.0.1}{10} }^{4}$ |
${\href{/LocalNumberField/7.10.0.1}{10} }^{4}$ |
R |
${\href{/LocalNumberField/13.10.0.1}{10} }^{4}$ |
${\href{/LocalNumberField/17.10.0.1}{10} }^{4}$ |
${\href{/LocalNumberField/19.10.0.1}{10} }^{4}$ |
${\href{/LocalNumberField/23.2.0.1}{2} }^{20}$ |
${\href{/LocalNumberField/29.10.0.1}{10} }^{4}$ |
${\href{/LocalNumberField/31.10.0.1}{10} }^{4}$ |
${\href{/LocalNumberField/37.10.0.1}{10} }^{4}$ |
${\href{/LocalNumberField/41.10.0.1}{10} }^{4}$ |
${\href{/LocalNumberField/43.2.0.1}{2} }^{20}$ |
${\href{/LocalNumberField/47.10.0.1}{10} }^{4}$ |
${\href{/LocalNumberField/53.10.0.1}{10} }^{4}$ |
${\href{/LocalNumberField/59.10.0.1}{10} }^{4}$ |
In the table, R denotes a ramified prime.
Cycle lengths which are repeated in a cycle type are indicated by
exponents.
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])