Normalized defining polynomial
\( x^{40} - 57 x^{38} + 1425 x^{36} - 20652 x^{34} + 193556 x^{32} - 1241646 x^{30} + 5639500 x^{28} - 18536622 x^{26} + 44732012 x^{24} - 79942830 x^{22} + 106185927 x^{20} - 104672040 x^{18} + 76047611 x^{16} - 40198503 x^{14} + 15148783 x^{12} - 3949296 x^{10} + 681395 x^{8} - 72774 x^{6} + 4330 x^{4} - 120 x^{2} + 1 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $\frac{1}{43} a^{36} - \frac{1}{43} a^{34} + \frac{8}{43} a^{32} - \frac{9}{43} a^{30} + \frac{16}{43} a^{28} + \frac{9}{43} a^{26} + \frac{20}{43} a^{24} - \frac{2}{43} a^{22} - \frac{12}{43} a^{20} + \frac{4}{43} a^{18} + \frac{8}{43} a^{16} + \frac{14}{43} a^{14} + \frac{5}{43} a^{12} + \frac{21}{43} a^{10} + \frac{16}{43} a^{8} + \frac{3}{43} a^{6} - \frac{5}{43} a^{4} + \frac{5}{43} a^{2} + \frac{20}{43}$, $\frac{1}{43} a^{37} - \frac{1}{43} a^{35} + \frac{8}{43} a^{33} - \frac{9}{43} a^{31} + \frac{16}{43} a^{29} + \frac{9}{43} a^{27} + \frac{20}{43} a^{25} - \frac{2}{43} a^{23} - \frac{12}{43} a^{21} + \frac{4}{43} a^{19} + \frac{8}{43} a^{17} + \frac{14}{43} a^{15} + \frac{5}{43} a^{13} + \frac{21}{43} a^{11} + \frac{16}{43} a^{9} + \frac{3}{43} a^{7} - \frac{5}{43} a^{5} + \frac{5}{43} a^{3} + \frac{20}{43} a$, $\frac{1}{11779850768470767736091164007281} a^{38} - \frac{104149634653874014884603201447}{11779850768470767736091164007281} a^{36} - \frac{5377651676694521217843332536714}{11779850768470767736091164007281} a^{34} + \frac{4611175375244917765629740518204}{11779850768470767736091164007281} a^{32} - \frac{3670876016133604166478561815893}{11779850768470767736091164007281} a^{30} + \frac{5095946805339043377761481926821}{11779850768470767736091164007281} a^{28} + \frac{1942700540901303335114061561559}{11779850768470767736091164007281} a^{26} - \frac{3329489896198655860787595735663}{11779850768470767736091164007281} a^{24} + \frac{5277780155769692499873597121384}{11779850768470767736091164007281} a^{22} - \frac{2157508012168933224462445102967}{11779850768470767736091164007281} a^{20} + \frac{1462773598614393377459364044762}{11779850768470767736091164007281} a^{18} - \frac{135981509753506197371808370755}{273950017871413203164910790867} a^{16} - \frac{714006898902038560520997388914}{11779850768470767736091164007281} a^{14} + \frac{696138276232508111825750606962}{11779850768470767736091164007281} a^{12} - \frac{3847446416094753666655601035014}{11779850768470767736091164007281} a^{10} + \frac{50464044798993822172186615558}{512167424716120336351789739447} a^{8} - \frac{774428790760829460683038757344}{11779850768470767736091164007281} a^{6} + \frac{2063152560074271105115518306491}{11779850768470767736091164007281} a^{4} - \frac{2577253213598548182807296352060}{11779850768470767736091164007281} a^{2} + \frac{569466228461565869621141555609}{11779850768470767736091164007281}$, $\frac{1}{11779850768470767736091164007281} a^{39} - \frac{104149634653874014884603201447}{11779850768470767736091164007281} a^{37} - \frac{5377651676694521217843332536714}{11779850768470767736091164007281} a^{35} + \frac{4611175375244917765629740518204}{11779850768470767736091164007281} a^{33} - \frac{3670876016133604166478561815893}{11779850768470767736091164007281} a^{31} + \frac{5095946805339043377761481926821}{11779850768470767736091164007281} a^{29} + \frac{1942700540901303335114061561559}{11779850768470767736091164007281} a^{27} - \frac{3329489896198655860787595735663}{11779850768470767736091164007281} a^{25} + \frac{5277780155769692499873597121384}{11779850768470767736091164007281} a^{23} - \frac{2157508012168933224462445102967}{11779850768470767736091164007281} a^{21} + \frac{1462773598614393377459364044762}{11779850768470767736091164007281} a^{19} - \frac{135981509753506197371808370755}{273950017871413203164910790867} a^{17} - \frac{714006898902038560520997388914}{11779850768470767736091164007281} a^{15} + \frac{696138276232508111825750606962}{11779850768470767736091164007281} a^{13} - \frac{3847446416094753666655601035014}{11779850768470767736091164007281} a^{11} + \frac{50464044798993822172186615558}{512167424716120336351789739447} a^{9} - \frac{774428790760829460683038757344}{11779850768470767736091164007281} a^{7} + \frac{2063152560074271105115518306491}{11779850768470767736091164007281} a^{5} - \frac{2577253213598548182807296352060}{11779850768470767736091164007281} a^{3} + \frac{569466228461565869621141555609}{11779850768470767736091164007281} a$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $39$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1149329825881126000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_{10}$ (as 40T7):
| An abelian group of order 40 |
| The 40 conjugacy class representatives for $C_2^2\times C_{10}$ |
| Character table for $C_2^2\times C_{10}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{4}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{20}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{20}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $11$ | 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |
| 11.10.9.1 | $x^{10} - 11$ | $10$ | $1$ | $9$ | $C_{10}$ | $[\ ]_{10}$ | |