magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 48, -288, -2512, 8232, 43393, -102396, -369684, 703905, 1857788, -3029168, -6077890, 8815690, 13764066, -18249278, -22476466, 27803858, 27222459, -31915288, -24933608, 28043254, 17493203, -19054236, -9469608, 10063407, 3963256, -4133168, -1277913, 1313873, 314247, -319703, -57817, 58378, 7701, -7736, -701, 702, 39, -39, -1, 1]);
sage: x = polygen(QQ); K.<a> = NumberField(x^40 - x^39 - 39*x^38 + 39*x^37 + 702*x^36 - 701*x^35 - 7736*x^34 + 7701*x^33 + 58378*x^32 - 57817*x^31 - 319703*x^30 + 314247*x^29 + 1313873*x^28 - 1277913*x^27 - 4133168*x^26 + 3963256*x^25 + 10063407*x^24 - 9469608*x^23 - 19054236*x^22 + 17493203*x^21 + 28043254*x^20 - 24933608*x^19 - 31915288*x^18 + 27222459*x^17 + 27803858*x^16 - 22476466*x^15 - 18249278*x^14 + 13764066*x^13 + 8815690*x^12 - 6077890*x^11 - 3029168*x^10 + 1857788*x^9 + 703905*x^8 - 369684*x^7 - 102396*x^6 + 43393*x^5 + 8232*x^4 - 2512*x^3 - 288*x^2 + 48*x + 1)
gp: K = bnfinit(x^40 - x^39 - 39*x^38 + 39*x^37 + 702*x^36 - 701*x^35 - 7736*x^34 + 7701*x^33 + 58378*x^32 - 57817*x^31 - 319703*x^30 + 314247*x^29 + 1313873*x^28 - 1277913*x^27 - 4133168*x^26 + 3963256*x^25 + 10063407*x^24 - 9469608*x^23 - 19054236*x^22 + 17493203*x^21 + 28043254*x^20 - 24933608*x^19 - 31915288*x^18 + 27222459*x^17 + 27803858*x^16 - 22476466*x^15 - 18249278*x^14 + 13764066*x^13 + 8815690*x^12 - 6077890*x^11 - 3029168*x^10 + 1857788*x^9 + 703905*x^8 - 369684*x^7 - 102396*x^6 + 43393*x^5 + 8232*x^4 - 2512*x^3 - 288*x^2 + 48*x + 1, 1)
\( x^{40} - x^{39} - 39 x^{38} + 39 x^{37} + 702 x^{36} - 701 x^{35} - 7736 x^{34} + 7701 x^{33} + 58378 x^{32} - 57817 x^{31} - 319703 x^{30} + 314247 x^{29} + 1313873 x^{28} - 1277913 x^{27} - 4133168 x^{26} + 3963256 x^{25} + 10063407 x^{24} - 9469608 x^{23} - 19054236 x^{22} + 17493203 x^{21} + 28043254 x^{20} - 24933608 x^{19} - 31915288 x^{18} + 27222459 x^{17} + 27803858 x^{16} - 22476466 x^{15} - 18249278 x^{14} + 13764066 x^{13} + 8815690 x^{12} - 6077890 x^{11} - 3029168 x^{10} + 1857788 x^{9} + 703905 x^{8} - 369684 x^{7} - 102396 x^{6} + 43393 x^{5} + 8232 x^{4} - 2512 x^{3} - 288 x^{2} + 48 x + 1 \)
magma: DefiningPolynomial(K);
sage: K.defining_polynomial()
| Degree: | | $40$ |
|
| Signature: | | $[40, 0]$ |
|
| Discriminant: | | \(100383397447978918530459891214693626269465146363712847232818603515625=3^{20}\cdot 5^{30}\cdot 11^{36}\) | magma: Discriminant(Integers(K));
|
| Root discriminant: | | $50.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
|
| Ramified primes: | | $3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
gp: factor(abs(K.disc))[,1]~
|
| This field is Galois and abelian over $\Q$. |
| Conductor: | | \(165=3\cdot 5\cdot 11\) |
| Dirichlet character group:
| |
$\lbrace$$\chi_{165}(1,·)$, $\chi_{165}(131,·)$, $\chi_{165}(4,·)$, $\chi_{165}(134,·)$, $\chi_{165}(7,·)$, $\chi_{165}(136,·)$, $\chi_{165}(137,·)$, $\chi_{165}(13,·)$, $\chi_{165}(142,·)$, $\chi_{165}(16,·)$, $\chi_{165}(149,·)$, $\chi_{165}(23,·)$, $\chi_{165}(152,·)$, $\chi_{165}(28,·)$, $\chi_{165}(29,·)$, $\chi_{165}(158,·)$, $\chi_{165}(31,·)$, $\chi_{165}(161,·)$, $\chi_{165}(34,·)$, $\chi_{165}(164,·)$, $\chi_{165}(38,·)$, $\chi_{165}(41,·)$, $\chi_{165}(43,·)$, $\chi_{165}(47,·)$, $\chi_{165}(49,·)$, $\chi_{165}(52,·)$, $\chi_{165}(53,·)$, $\chi_{165}(64,·)$, $\chi_{165}(73,·)$, $\chi_{165}(74,·)$, $\chi_{165}(91,·)$, $\chi_{165}(92,·)$, $\chi_{165}(101,·)$, $\chi_{165}(112,·)$, $\chi_{165}(113,·)$, $\chi_{165}(116,·)$, $\chi_{165}(118,·)$, $\chi_{165}(122,·)$, $\chi_{165}(124,·)$, $\chi_{165}(127,·)$$\rbrace$
|
| This is not a CM field. |
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$, $a^{37}$, $a^{38}$, $a^{39}$
Trivial group, which has order $1$
(assuming GRH)
sage: K.class_group().invariants()
magma: UK, f := UnitGroup(K);
sage: UK = K.unit_group()
| Rank: | | $39$
|
|
| Torsion generator: | | \( -1 \) (order $2$)
| magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
|
| Fundamental units: | | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
(assuming GRH)
| magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
|
| Regulator: | | \( 1967499665744724500000 \)
(assuming GRH)
|
|
$C_2\times C_{20}$ (as 40T2):
sage: K.galois_group(type='pari')
|
\(\Q(\sqrt{33}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{165}) \), \(\Q(\sqrt{5}, \sqrt{33})\), 4.4.15125.1, \(\Q(\zeta_{15})^+\), \(\Q(\zeta_{11})^+\), 8.8.18530015625.1, \(\Q(\zeta_{33})^+\), 10.10.669871503125.1, 10.10.1790566527853125.1, 20.20.3206128490667995866421572265625.1, \(\Q(\zeta_{55})^+\), 20.20.82802905234194108120391845703125.1
|
Fields in the database are given up to isomorphism. Isomorphic
intermediate fields are shown with their multiplicities.
| $p$ |
2 |
3 |
5 |
7 |
11 |
13 |
17 |
19 |
23 |
29 |
31 |
37 |
41 |
43 |
47 |
53 |
59 |
| Cycle type |
$20^{2}$ |
R |
R |
$20^{2}$ |
R |
$20^{2}$ |
$20^{2}$ |
${\href{/LocalNumberField/19.10.0.1}{10} }^{4}$ |
${\href{/LocalNumberField/23.4.0.1}{4} }^{10}$ |
${\href{/LocalNumberField/29.5.0.1}{5} }^{8}$ |
${\href{/LocalNumberField/31.5.0.1}{5} }^{8}$ |
$20^{2}$ |
${\href{/LocalNumberField/41.10.0.1}{10} }^{4}$ |
${\href{/LocalNumberField/43.4.0.1}{4} }^{10}$ |
$20^{2}$ |
$20^{2}$ |
${\href{/LocalNumberField/59.10.0.1}{10} }^{4}$ |
In the table, R denotes a ramified prime.
Cycle lengths which are repeated in a cycle type are indicated by
exponents.
magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
magma: idealfactors := Factorization(p*Integers(K)); // get the data
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
gp: idealfactors = idealprimedec(K, p); \\ get the data
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])