Normalized defining polynomial
\( x^{40} - x - 3 \)
Invariants
| Degree: | $40$ |
| |
| Signature: | $[2, 19]$ |
| |
| Discriminant: |
\(-489\!\cdots\!959\)
\(\medspace = -\,3^{39}\cdot 47\cdot 31247\cdot 1492676502904837324513\cdot 55\!\cdots\!81\)
|
| |
| Root discriminant: | \(116.75\) |
| |
| Galois root discriminant: | not computed | ||
| Ramified primes: |
\(3\), \(47\), \(31247\), \(1492676502904837324513\), \(55147\!\cdots\!92581\)
|
| |
| Discriminant root field: | $\Q(\sqrt{-36267\!\cdots\!34831}$) | ||
| $\Aut(K/\Q)$: | $C_1$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$, $a^{37}$, $a^{38}$, $a^{39}$
| Monogenic: | Yes | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | not computed |
| |
| Narrow class group: | not computed |
|
Unit group
| Rank: | $20$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: | not computed |
| |
| Regulator: | not computed |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr = \mathstrut &\frac{2^{2}\cdot(2\pi)^{19}\cdot R \cdot h}{2\cdot\sqrt{48992385598969548352871113647963491615789709448988889059930192105219196517009951959}}\cr\mathstrut & \text{
Galois group
| A non-solvable group of order 815915283247897734345611269596115894272000000000 |
| The 37338 conjugacy class representatives for $S_{40}$ are not computed |
| Character table for $S_{40}$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.14.0.1}{14} }{,}\,{\href{/padicField/2.13.0.1}{13} }{,}\,{\href{/padicField/2.10.0.1}{10} }{,}\,{\href{/padicField/2.3.0.1}{3} }$ | R | $29{,}\,{\href{/padicField/5.8.0.1}{8} }{,}\,{\href{/padicField/5.2.0.1}{2} }{,}\,{\href{/padicField/5.1.0.1}{1} }$ | $29{,}\,{\href{/padicField/7.11.0.1}{11} }$ | $29{,}\,{\href{/padicField/11.5.0.1}{5} }^{2}{,}\,{\href{/padicField/11.1.0.1}{1} }$ | $20{,}\,17{,}\,{\href{/padicField/13.2.0.1}{2} }{,}\,{\href{/padicField/13.1.0.1}{1} }$ | $25{,}\,{\href{/padicField/17.10.0.1}{10} }{,}\,{\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.1.0.1}{1} }$ | $17{,}\,{\href{/padicField/19.9.0.1}{9} }{,}\,{\href{/padicField/19.6.0.1}{6} }^{2}{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ | $40$ | $15{,}\,{\href{/padicField/29.13.0.1}{13} }{,}\,{\href{/padicField/29.11.0.1}{11} }{,}\,{\href{/padicField/29.1.0.1}{1} }$ | $31{,}\,{\href{/padicField/31.8.0.1}{8} }{,}\,{\href{/padicField/31.1.0.1}{1} }$ | ${\href{/padicField/37.14.0.1}{14} }{,}\,{\href{/padicField/37.9.0.1}{9} }{,}\,{\href{/padicField/37.7.0.1}{7} }{,}\,{\href{/padicField/37.4.0.1}{4} }{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | ${\href{/padicField/41.12.0.1}{12} }{,}\,{\href{/padicField/41.8.0.1}{8} }{,}\,{\href{/padicField/41.7.0.1}{7} }{,}\,{\href{/padicField/41.5.0.1}{5} }{,}\,{\href{/padicField/41.4.0.1}{4} }{,}\,{\href{/padicField/41.3.0.1}{3} }{,}\,{\href{/padicField/41.1.0.1}{1} }$ | $24{,}\,16$ | R | $16{,}\,{\href{/padicField/53.9.0.1}{9} }{,}\,{\href{/padicField/53.8.0.1}{8} }{,}\,{\href{/padicField/53.5.0.1}{5} }{,}\,{\href{/padicField/53.1.0.1}{1} }^{2}$ | $30{,}\,{\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.4.0.1}{4} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(3\)
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| 3.1.3.3a1.2 | $x^{3} + 6 x + 3$ | $3$ | $1$ | $3$ | $S_3$ | $$[\frac{3}{2}]_{2}$$ | |
| 3.3.3.9a7.1 | $x^{9} + 6 x^{7} + 3 x^{6} + 18 x^{5} + 15 x^{4} + 26 x^{3} + 24 x^{2} + 15 x + 7$ | $3$ | $3$ | $9$ | $C_3^2 : S_3 $ | $$[\frac{3}{2}, \frac{3}{2}]_{2}^{3}$$ | |
| 3.3.3.9a4.1 | $x^{9} + 6 x^{7} + 3 x^{6} + 12 x^{5} + 15 x^{4} + 11 x^{3} + 18 x^{2} + 9 x + 4$ | $3$ | $3$ | $9$ | $(C_3^3:C_3):C_2$ | $$[\frac{3}{2}, \frac{3}{2}, \frac{3}{2}]_{2}^{3}$$ | |
| 3.3.3.9a8.1 | $x^{9} + 6 x^{7} + 3 x^{6} + 15 x^{5} + 12 x^{4} + 20 x^{3} + 15 x^{2} + 12 x + 7$ | $3$ | $3$ | $9$ | $C_3^2 : S_3 $ | $$[\frac{3}{2}, \frac{3}{2}]_{2}^{3}$$ | |
| 3.3.3.9a7.1 | $x^{9} + 6 x^{7} + 3 x^{6} + 18 x^{5} + 15 x^{4} + 26 x^{3} + 24 x^{2} + 15 x + 7$ | $3$ | $3$ | $9$ | $C_3^2 : S_3 $ | $$[\frac{3}{2}, \frac{3}{2}]_{2}^{3}$$ | |
|
\(47\)
| $\Q_{47}$ | $x + 42$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{47}$ | $x + 42$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| 47.1.2.1a1.1 | $x^{2} + 47$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| 47.6.1.0a1.1 | $x^{6} + 2 x^{4} + 35 x^{3} + 9 x^{2} + 41 x + 5$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ | |
| 47.8.1.0a1.1 | $x^{8} + x^{4} + 29 x^{3} + 19 x^{2} + 3 x + 5$ | $1$ | $8$ | $0$ | $C_8$ | $$[\ ]^{8}$$ | |
| 47.9.1.0a1.1 | $x^{9} + x^{3} + 19 x^{2} + x + 42$ | $1$ | $9$ | $0$ | $C_9$ | $$[\ ]^{9}$$ | |
| 47.13.1.0a1.1 | $x^{13} + 5 x + 42$ | $1$ | $13$ | $0$ | $C_{13}$ | $$[\ ]^{13}$$ | |
|
\(31247\)
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | |
| Deg $4$ | $1$ | $4$ | $0$ | $C_4$ | $$[\ ]^{4}$$ | ||
| Deg $5$ | $1$ | $5$ | $0$ | $C_5$ | $$[\ ]^{5}$$ | ||
| Deg $6$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ | ||
| Deg $6$ | $1$ | $6$ | $0$ | $C_6$ | $$[\ ]^{6}$$ | ||
| Deg $8$ | $1$ | $8$ | $0$ | $C_8$ | $$[\ ]^{8}$$ | ||
| Deg $9$ | $1$ | $9$ | $0$ | $C_9$ | $$[\ ]^{9}$$ | ||
|
\(149\!\cdots\!513\)
| $\Q_{14\!\cdots\!13}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| $\Q_{14\!\cdots\!13}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ | |
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $36$ | $1$ | $36$ | $0$ | $C_{36}$ | $$[\ ]^{36}$$ | ||
|
\(551\!\cdots\!581\)
| $\Q_{55\!\cdots\!81}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $$[\ ]$$ |
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $1$ | $2$ | $0$ | $C_2$ | $$[\ ]^{2}$$ | ||
| Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $$[\ ]_{2}$$ | ||
| Deg $7$ | $1$ | $7$ | $0$ | $C_7$ | $$[\ ]^{7}$$ | ||
| Deg $24$ | $1$ | $24$ | $0$ | $C_{24}$ | $$[\ ]^{24}$$ |