Normalized defining polynomial
\( x^{40} - 4 x - 1 \)
Invariants
| Degree: | $40$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[2, 19]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-123799673865700652129832399822361287621723938537943027700441950831650013184=-\,2^{40}\cdot 65581\cdot 130948229477800849\cdot 13111186908622089242206486448360790839011\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $71.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 65581, 130948229477800849, 13111186908622089242206486448360790839011$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{2} a^{20} - \frac{1}{2}$, $\frac{1}{2} a^{21} - \frac{1}{2} a$, $\frac{1}{2} a^{22} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{23} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{24} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{25} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{26} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{27} - \frac{1}{2} a^{7}$, $\frac{1}{2} a^{28} - \frac{1}{2} a^{8}$, $\frac{1}{2} a^{29} - \frac{1}{2} a^{9}$, $\frac{1}{2} a^{30} - \frac{1}{2} a^{10}$, $\frac{1}{2} a^{31} - \frac{1}{2} a^{11}$, $\frac{1}{2} a^{32} - \frac{1}{2} a^{12}$, $\frac{1}{2} a^{33} - \frac{1}{2} a^{13}$, $\frac{1}{2} a^{34} - \frac{1}{2} a^{14}$, $\frac{1}{2} a^{35} - \frac{1}{2} a^{15}$, $\frac{1}{2} a^{36} - \frac{1}{2} a^{16}$, $\frac{1}{2} a^{37} - \frac{1}{2} a^{17}$, $\frac{1}{2} a^{38} - \frac{1}{2} a^{18}$, $\frac{1}{2} a^{39} - \frac{1}{2} a^{19}$
Class group and class number
Not computed
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$S_{40}$ (as 40T315842):
| A non-solvable group of order 815915283247897734345611269596115894272000000000 |
| The 37338 conjugacy class representatives for $S_{40}$ are not computed |
| Character table for $S_{40}$ is not computed |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $40$ | $29{,}\,{\href{/LocalNumberField/5.11.0.1}{11} }$ | $19{,}\,{\href{/LocalNumberField/7.13.0.1}{13} }{,}\,{\href{/LocalNumberField/7.7.0.1}{7} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | $30{,}\,{\href{/LocalNumberField/11.7.0.1}{7} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | $38{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | $19{,}\,15{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }$ | $33{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | $15{,}\,{\href{/LocalNumberField/23.13.0.1}{13} }{,}\,{\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | $20{,}\,{\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | $24{,}\,{\href{/LocalNumberField/31.9.0.1}{9} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | $16{,}\,{\href{/LocalNumberField/37.11.0.1}{11} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | $32{,}\,{\href{/LocalNumberField/41.8.0.1}{8} }$ | ${\href{/LocalNumberField/43.14.0.1}{14} }{,}\,{\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.9.0.1}{9} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | $29{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | $29{,}\,{\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | $30{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 65581 | Data not computed | ||||||
| 130948229477800849 | Data not computed | ||||||
| 13111186908622089242206486448360790839011 | Data not computed | ||||||