Normalized defining polynomial
\( x^{40} - 25 x^{36} + 441 x^{32} - 3794 x^{28} + 23626 x^{24} - 66403 x^{20} + 133864 x^{16} - 62097 x^{12} + 23622 x^{8} - 155 x^{4} + 1 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $\frac{1}{89893} a^{32} + \frac{14059}{89893} a^{28} + \frac{7913}{89893} a^{24} - \frac{39223}{89893} a^{20} - \frac{10045}{89893} a^{16} + \frac{32533}{89893} a^{12} + \frac{42331}{89893} a^{8} + \frac{10410}{89893} a^{4} + \frac{32919}{89893}$, $\frac{1}{89893} a^{33} + \frac{14059}{89893} a^{29} + \frac{7913}{89893} a^{25} - \frac{39223}{89893} a^{21} - \frac{10045}{89893} a^{17} + \frac{32533}{89893} a^{13} + \frac{42331}{89893} a^{9} + \frac{10410}{89893} a^{5} + \frac{32919}{89893} a$, $\frac{1}{89893} a^{34} + \frac{14059}{89893} a^{30} + \frac{7913}{89893} a^{26} - \frac{39223}{89893} a^{22} - \frac{10045}{89893} a^{18} + \frac{32533}{89893} a^{14} + \frac{42331}{89893} a^{10} + \frac{10410}{89893} a^{6} + \frac{32919}{89893} a^{2}$, $\frac{1}{89893} a^{35} + \frac{14059}{89893} a^{31} + \frac{7913}{89893} a^{27} - \frac{39223}{89893} a^{23} - \frac{10045}{89893} a^{19} + \frac{32533}{89893} a^{15} + \frac{42331}{89893} a^{11} + \frac{10410}{89893} a^{7} + \frac{32919}{89893} a^{3}$, $\frac{1}{2273551084786794990343} a^{36} - \frac{4729965627837937}{2273551084786794990343} a^{32} - \frac{150825324919640204024}{2273551084786794990343} a^{28} + \frac{364339556866868606498}{2273551084786794990343} a^{24} - \frac{1120154953666675125164}{2273551084786794990343} a^{20} + \frac{500384154063620494455}{2273551084786794990343} a^{16} + \frac{311678175195741088383}{2273551084786794990343} a^{12} + \frac{752114182503327175171}{2273551084786794990343} a^{8} - \frac{1103175853111986812869}{2273551084786794990343} a^{4} - \frac{1109002502122879428970}{2273551084786794990343}$, $\frac{1}{2273551084786794990343} a^{37} - \frac{4729965627837937}{2273551084786794990343} a^{33} - \frac{150825324919640204024}{2273551084786794990343} a^{29} + \frac{364339556866868606498}{2273551084786794990343} a^{25} - \frac{1120154953666675125164}{2273551084786794990343} a^{21} + \frac{500384154063620494455}{2273551084786794990343} a^{17} + \frac{311678175195741088383}{2273551084786794990343} a^{13} + \frac{752114182503327175171}{2273551084786794990343} a^{9} - \frac{1103175853111986812869}{2273551084786794990343} a^{5} - \frac{1109002502122879428970}{2273551084786794990343} a$, $\frac{1}{2273551084786794990343} a^{38} - \frac{4729965627837937}{2273551084786794990343} a^{34} - \frac{150825324919640204024}{2273551084786794990343} a^{30} + \frac{364339556866868606498}{2273551084786794990343} a^{26} - \frac{1120154953666675125164}{2273551084786794990343} a^{22} + \frac{500384154063620494455}{2273551084786794990343} a^{18} + \frac{311678175195741088383}{2273551084786794990343} a^{14} + \frac{752114182503327175171}{2273551084786794990343} a^{10} - \frac{1103175853111986812869}{2273551084786794990343} a^{6} - \frac{1109002502122879428970}{2273551084786794990343} a^{2}$, $\frac{1}{2273551084786794990343} a^{39} - \frac{4729965627837937}{2273551084786794990343} a^{35} - \frac{150825324919640204024}{2273551084786794990343} a^{31} + \frac{364339556866868606498}{2273551084786794990343} a^{27} - \frac{1120154953666675125164}{2273551084786794990343} a^{23} + \frac{500384154063620494455}{2273551084786794990343} a^{19} + \frac{311678175195741088383}{2273551084786794990343} a^{15} + \frac{752114182503327175171}{2273551084786794990343} a^{11} - \frac{1103175853111986812869}{2273551084786794990343} a^{7} - \frac{1109002502122879428970}{2273551084786794990343} a^{3}$
Class group and class number
$C_{5}\times C_{5}\times C_{5}$, which has order $125$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{53581368526244142240}{2273551084786794990343} a^{37} + \frac{1339224586826730664500}{2273551084786794990343} a^{33} - \frac{23621564515385087475643}{2273551084786794990343} a^{29} + \frac{203149221171675960743220}{2273551084786794990343} a^{25} - \frac{1264704590067397349415492}{2273551084786794990343} a^{21} + \frac{3550359893243219213346364}{2273551084786794990343} a^{17} - \frac{7150303866121008375115512}{2273551084786794990343} a^{13} + \frac{3281262936679115684907084}{2273551084786794990343} a^{9} - \frac{1238571944153848101248881}{2273551084786794990343} a^{5} + \frac{139324111753014574752}{2273551084786794990343} a \) (order $24$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7121371366090164.0 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_{10}$ (as 40T7):
| An abelian group of order 40 |
| The 40 conjugacy class representatives for $C_2^2\times C_{10}$ |
| Character table for $C_2^2\times C_{10}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{4}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{20}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{20}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |