Normalized defining polynomial
\( x^{40} - 27 x^{38} + 452 x^{36} - 4707 x^{34} + 35613 x^{32} - 189939 x^{30} + 758623 x^{28} - 2202717 x^{26} + 4873258 x^{24} - 8161689 x^{22} + 10602647 x^{20} - 10506063 x^{18} + 8018080 x^{16} - 4542648 x^{14} + 1926084 x^{12} - 569703 x^{10} + 122757 x^{8} - 16992 x^{6} + 1555 x^{4} - 45 x^{2} + 1 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $\frac{1}{8} a^{30} - \frac{1}{4} a^{24} - \frac{3}{8} a^{18} - \frac{1}{2} a^{12} - \frac{1}{2} a^{6} - \frac{3}{8}$, $\frac{1}{8} a^{31} - \frac{1}{4} a^{25} - \frac{3}{8} a^{19} - \frac{1}{2} a^{13} - \frac{1}{2} a^{7} - \frac{3}{8} a$, $\frac{1}{2648} a^{32} - \frac{3}{2648} a^{30} - \frac{36}{331} a^{28} - \frac{425}{1324} a^{26} - \frac{521}{1324} a^{24} - \frac{110}{331} a^{22} - \frac{499}{2648} a^{20} + \frac{1153}{2648} a^{18} - \frac{71}{331} a^{16} - \frac{151}{662} a^{14} - \frac{21}{662} a^{12} - \frac{61}{331} a^{10} - \frac{305}{662} a^{8} - \frac{289}{662} a^{6} + \frac{61}{331} a^{4} - \frac{467}{2648} a^{2} + \frac{161}{2648}$, $\frac{1}{2648} a^{33} - \frac{3}{2648} a^{31} - \frac{36}{331} a^{29} - \frac{425}{1324} a^{27} - \frac{521}{1324} a^{25} - \frac{110}{331} a^{23} - \frac{499}{2648} a^{21} + \frac{1153}{2648} a^{19} - \frac{71}{331} a^{17} - \frac{151}{662} a^{15} - \frac{21}{662} a^{13} - \frac{61}{331} a^{11} - \frac{305}{662} a^{9} - \frac{289}{662} a^{7} + \frac{61}{331} a^{5} - \frac{467}{2648} a^{3} + \frac{161}{2648} a$, $\frac{1}{2648} a^{34} + \frac{17}{1324} a^{30} + \frac{467}{1324} a^{28} - \frac{118}{331} a^{26} + \frac{157}{662} a^{24} - \frac{491}{2648} a^{22} - \frac{43}{331} a^{20} - \frac{375}{1324} a^{18} + \frac{85}{662} a^{16} + \frac{94}{331} a^{14} + \frac{73}{331} a^{12} - \frac{9}{662} a^{10} + \frac{60}{331} a^{8} + \frac{124}{331} a^{6} + \frac{997}{2648} a^{4} - \frac{155}{331} a^{2} - \frac{255}{1324}$, $\frac{1}{2648} a^{35} + \frac{17}{1324} a^{31} + \frac{467}{1324} a^{29} - \frac{118}{331} a^{27} + \frac{157}{662} a^{25} - \frac{491}{2648} a^{23} - \frac{43}{331} a^{21} - \frac{375}{1324} a^{19} + \frac{85}{662} a^{17} + \frac{94}{331} a^{15} + \frac{73}{331} a^{13} - \frac{9}{662} a^{11} + \frac{60}{331} a^{9} + \frac{124}{331} a^{7} + \frac{997}{2648} a^{5} - \frac{155}{331} a^{3} - \frac{255}{1324} a$, $\frac{1}{1757670105895448} a^{36} + \frac{125745432187}{1757670105895448} a^{34} + \frac{53611515429}{439417526473862} a^{32} - \frac{48695506214033}{1757670105895448} a^{30} - \frac{181109982530143}{878835052947724} a^{28} + \frac{13685539502581}{219708763236931} a^{26} + \frac{167333300054771}{1757670105895448} a^{24} - \frac{831415846775529}{1757670105895448} a^{22} + \frac{161388495202393}{439417526473862} a^{20} + \frac{262987820129721}{1757670105895448} a^{18} - \frac{213541105864217}{439417526473862} a^{16} + \frac{70833740732344}{219708763236931} a^{14} - \frac{81468512342141}{219708763236931} a^{12} - \frac{18802528569891}{439417526473862} a^{10} - \frac{35013202274552}{219708763236931} a^{8} - \frac{487696764048079}{1757670105895448} a^{6} - \frac{399124144934985}{1757670105895448} a^{4} - \frac{70135783645755}{439417526473862} a^{2} + \frac{362063534391965}{1757670105895448}$, $\frac{1}{1757670105895448} a^{37} + \frac{125745432187}{1757670105895448} a^{35} + \frac{53611515429}{439417526473862} a^{33} - \frac{48695506214033}{1757670105895448} a^{31} - \frac{181109982530143}{878835052947724} a^{29} + \frac{13685539502581}{219708763236931} a^{27} + \frac{167333300054771}{1757670105895448} a^{25} - \frac{831415846775529}{1757670105895448} a^{23} + \frac{161388495202393}{439417526473862} a^{21} + \frac{262987820129721}{1757670105895448} a^{19} - \frac{213541105864217}{439417526473862} a^{17} + \frac{70833740732344}{219708763236931} a^{15} - \frac{81468512342141}{219708763236931} a^{13} - \frac{18802528569891}{439417526473862} a^{11} - \frac{35013202274552}{219708763236931} a^{9} - \frac{487696764048079}{1757670105895448} a^{7} - \frac{399124144934985}{1757670105895448} a^{5} - \frac{70135783645755}{439417526473862} a^{3} + \frac{362063534391965}{1757670105895448} a$, $\frac{1}{190464294096175871036769228047358678728} a^{38} - \frac{12419385469845324074091}{190464294096175871036769228047358678728} a^{36} - \frac{2626553875050354705426570913118893}{190464294096175871036769228047358678728} a^{34} - \frac{15071263560068018848555524440096911}{190464294096175871036769228047358678728} a^{32} + \frac{1990972507113331760226977946658621663}{47616073524043967759192307011839669682} a^{30} + \frac{20044986708948107901293027956923789613}{95232147048087935518384614023679339364} a^{28} + \frac{79731729239473220507171632599672089831}{190464294096175871036769228047358678728} a^{26} - \frac{39747562924451927285449177822031175571}{190464294096175871036769228047358678728} a^{24} - \frac{39361251771117294806077253772510935145}{190464294096175871036769228047358678728} a^{22} - \frac{59853549823964304167271614987235813}{790308274257991166127673145424724808} a^{20} + \frac{3219125190743403549407993980436057613}{95232147048087935518384614023679339364} a^{18} + \frac{7680545230823462716762344296445445269}{47616073524043967759192307011839669682} a^{16} + \frac{2505286755342207888832040408823481949}{23808036762021983879596153505919834841} a^{14} + \frac{18670488324485711289587245478539939469}{47616073524043967759192307011839669682} a^{12} - \frac{1409430317026641595902145617367705555}{47616073524043967759192307011839669682} a^{10} + \frac{2022860239520441059331771826177264081}{190464294096175871036769228047358678728} a^{8} - \frac{66961405942924845060844912800926535}{135176929805660660778402574909409992} a^{6} + \frac{68082084537433385004465934399368879023}{190464294096175871036769228047358678728} a^{4} - \frac{11320708239066942685475853954834872113}{190464294096175871036769228047358678728} a^{2} + \frac{30780413146575889301252993814540343119}{95232147048087935518384614023679339364}$, $\frac{1}{190464294096175871036769228047358678728} a^{39} - \frac{12419385469845324074091}{190464294096175871036769228047358678728} a^{37} - \frac{2626553875050354705426570913118893}{190464294096175871036769228047358678728} a^{35} - \frac{15071263560068018848555524440096911}{190464294096175871036769228047358678728} a^{33} + \frac{1990972507113331760226977946658621663}{47616073524043967759192307011839669682} a^{31} + \frac{20044986708948107901293027956923789613}{95232147048087935518384614023679339364} a^{29} + \frac{79731729239473220507171632599672089831}{190464294096175871036769228047358678728} a^{27} - \frac{39747562924451927285449177822031175571}{190464294096175871036769228047358678728} a^{25} - \frac{39361251771117294806077253772510935145}{190464294096175871036769228047358678728} a^{23} - \frac{59853549823964304167271614987235813}{790308274257991166127673145424724808} a^{21} + \frac{3219125190743403549407993980436057613}{95232147048087935518384614023679339364} a^{19} + \frac{7680545230823462716762344296445445269}{47616073524043967759192307011839669682} a^{17} + \frac{2505286755342207888832040408823481949}{23808036762021983879596153505919834841} a^{15} + \frac{18670488324485711289587245478539939469}{47616073524043967759192307011839669682} a^{13} - \frac{1409430317026641595902145617367705555}{47616073524043967759192307011839669682} a^{11} + \frac{2022860239520441059331771826177264081}{190464294096175871036769228047358678728} a^{9} - \frac{66961405942924845060844912800926535}{135176929805660660778402574909409992} a^{7} + \frac{68082084537433385004465934399368879023}{190464294096175871036769228047358678728} a^{5} - \frac{11320708239066942685475853954834872113}{190464294096175871036769228047358678728} a^{3} + \frac{30780413146575889301252993814540343119}{95232147048087935518384614023679339364} a$
Class group and class number
$C_{341}$, which has order $341$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{27316684355959916833092637517528873027}{190464294096175871036769228047358678728} a^{39} + \frac{184786157913599474017454827572781642377}{47616073524043967759192307011839669682} a^{37} - \frac{184925026152781696588747275062874615211}{2842750658151878672190585493244159384} a^{35} + \frac{64647315661418559540151101414199990632063}{95232147048087935518384614023679339364} a^{33} - \frac{980239929196757703403305316205883316441685}{190464294096175871036769228047358678728} a^{31} + \frac{2622156757649396795370564131466026052406637}{95232147048087935518384614023679339364} a^{29} - \frac{21018603182167478807582811611463321395513007}{190464294096175871036769228047358678728} a^{27} + \frac{30670925038352686297381961920571351569550571}{95232147048087935518384614023679339364} a^{25} - \frac{136480382534396773319898606663283980600718213}{190464294096175871036769228047358678728} a^{23} + \frac{238881564242539777515945593236944320144517}{197577068564497791531918286356181202} a^{21} - \frac{301686455636751478653712570025779821008056249}{190464294096175871036769228047358678728} a^{19} + \frac{75581490226939698786760573599790549057375565}{47616073524043967759192307011839669682} a^{17} - \frac{58446617004531023945757994856826333473082225}{47616073524043967759192307011839669682} a^{15} + \frac{33740394388690060158903629494688515166346657}{47616073524043967759192307011839669682} a^{13} - \frac{14612998976656374992952461211789402745508809}{47616073524043967759192307011839669682} a^{11} + \frac{17877224119426929500843934407316000783482505}{190464294096175871036769228047358678728} a^{9} - \frac{494799451533960849617512891601807511701572}{23808036762021983879596153505919834841} a^{7} + \frac{576125839469863601959393448442508266697507}{190464294096175871036769228047358678728} a^{5} - \frac{6542627175778891895214920494175257391033}{23808036762021983879596153505919834841} a^{3} + \frac{1518659142800836072755025387903128043839}{190464294096175871036769228047358678728} a \) (order $12$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 17492090815064632 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_{10}$ (as 40T7):
| An abelian group of order 40 |
| The 40 conjugacy class representatives for $C_2^2\times C_{10}$ |
| Character table for $C_2^2\times C_{10}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{4}$ | R | ${\href{/LocalNumberField/13.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{20}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{20}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $11$ | 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |
| 11.10.8.5 | $x^{10} - 2321 x^{5} + 2033647$ | $5$ | $2$ | $8$ | $C_{10}$ | $[\ ]_{5}^{2}$ | |