Normalized defining polynomial
\( x^{40} - 31 x^{35} + 718 x^{30} - 14725 x^{25} + 282001 x^{20} - 3578175 x^{15} + 42397182 x^{10} - 444816117 x^{5} + 3486784401 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $\frac{1}{3} a^{21} - \frac{1}{3} a^{16} + \frac{1}{3} a^{11} - \frac{1}{3} a^{6} + \frac{1}{3} a$, $\frac{1}{9} a^{22} - \frac{4}{9} a^{17} - \frac{2}{9} a^{12} - \frac{1}{9} a^{7} + \frac{4}{9} a^{2}$, $\frac{1}{27} a^{23} - \frac{4}{27} a^{18} - \frac{11}{27} a^{13} - \frac{10}{27} a^{8} + \frac{13}{27} a^{3}$, $\frac{1}{81} a^{24} - \frac{31}{81} a^{19} - \frac{11}{81} a^{14} + \frac{17}{81} a^{9} + \frac{40}{81} a^{4}$, $\frac{1}{68526243} a^{25} + \frac{62}{243} a^{20} + \frac{22}{243} a^{15} + \frac{47}{243} a^{10} + \frac{1}{243} a^{5} - \frac{14725}{282001}$, $\frac{1}{205578729} a^{26} + \frac{62}{729} a^{21} + \frac{22}{729} a^{16} + \frac{290}{729} a^{11} + \frac{244}{729} a^{6} - \frac{296726}{846003} a$, $\frac{1}{616736187} a^{27} + \frac{62}{2187} a^{22} + \frac{751}{2187} a^{17} + \frac{1019}{2187} a^{12} + \frac{244}{2187} a^{7} - \frac{1142729}{2538009} a^{2}$, $\frac{1}{1850208561} a^{28} + \frac{62}{6561} a^{23} - \frac{1436}{6561} a^{18} + \frac{3206}{6561} a^{13} + \frac{244}{6561} a^{8} - \frac{1142729}{7614027} a^{3}$, $\frac{1}{5550625683} a^{29} + \frac{62}{19683} a^{24} - \frac{1436}{19683} a^{19} + \frac{9767}{19683} a^{14} + \frac{6805}{19683} a^{9} + \frac{6471298}{22842081} a^{4}$, $\frac{1}{16651877049} a^{30} - \frac{31}{16651877049} a^{25} + \frac{6340}{59049} a^{20} + \frac{24590}{59049} a^{15} + \frac{1}{59049} a^{10} - \frac{14725}{68526243} a^{5} + \frac{718}{282001}$, $\frac{1}{49955631147} a^{31} - \frac{31}{49955631147} a^{26} + \frac{6340}{177147} a^{21} + \frac{83639}{177147} a^{16} - \frac{59048}{177147} a^{11} + \frac{68511518}{205578729} a^{6} - \frac{93761}{282001} a$, $\frac{1}{149866893441} a^{32} - \frac{31}{149866893441} a^{27} + \frac{6340}{531441} a^{22} + \frac{260786}{531441} a^{17} - \frac{59048}{531441} a^{12} + \frac{274090247}{616736187} a^{7} + \frac{188240}{846003} a^{2}$, $\frac{1}{449600680323} a^{33} - \frac{31}{449600680323} a^{28} + \frac{6340}{1594323} a^{23} + \frac{260786}{1594323} a^{18} - \frac{59048}{1594323} a^{13} + \frac{274090247}{1850208561} a^{8} + \frac{1034243}{2538009} a^{3}$, $\frac{1}{1348802040969} a^{34} - \frac{31}{1348802040969} a^{29} + \frac{6340}{4782969} a^{24} + \frac{1855109}{4782969} a^{19} - \frac{1653371}{4782969} a^{14} - \frac{1576118314}{5550625683} a^{9} - \frac{1503766}{7614027} a^{4}$, $\frac{1}{4046406122907} a^{35} - \frac{31}{4046406122907} a^{30} + \frac{718}{4046406122907} a^{25} - \frac{6529849}{14348907} a^{20} + \frac{1}{14348907} a^{15} - \frac{14725}{16651877049} a^{10} + \frac{718}{68526243} a^{5} - \frac{31}{282001}$, $\frac{1}{12139218368721} a^{36} - \frac{31}{12139218368721} a^{31} + \frac{718}{12139218368721} a^{26} - \frac{6529849}{43046721} a^{21} + \frac{14348908}{43046721} a^{16} - \frac{16651891774}{49955631147} a^{11} + \frac{68526961}{205578729} a^{6} - \frac{282032}{846003} a$, $\frac{1}{36417655106163} a^{37} - \frac{31}{36417655106163} a^{32} + \frac{718}{36417655106163} a^{27} - \frac{6529849}{129140163} a^{22} + \frac{14348908}{129140163} a^{17} - \frac{66607522921}{149866893441} a^{12} - \frac{137051768}{616736187} a^{7} - \frac{282032}{2538009} a^{2}$, $\frac{1}{109252965318489} a^{38} - \frac{31}{109252965318489} a^{33} + \frac{718}{109252965318489} a^{28} - \frac{6529849}{387420489} a^{23} - \frac{114791255}{387420489} a^{18} + \frac{83259370520}{449600680323} a^{13} + \frac{479684419}{1850208561} a^{8} - \frac{282032}{7614027} a^{3}$, $\frac{1}{327758895955467} a^{39} - \frac{31}{327758895955467} a^{34} + \frac{718}{327758895955467} a^{29} - \frac{6529849}{1162261467} a^{24} - \frac{502211744}{1162261467} a^{19} + \frac{532860050843}{1348802040969} a^{14} - \frac{1370524142}{5550625683} a^{9} - \frac{7896059}{22842081} a^{4}$
Class group and class number
Not computed
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1079}{1348802040969} a^{39} + \frac{500858642}{1348802040969} a^{14} \) (order $50$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{20}$ (as 40T2):
| An abelian group of order 40 |
| The 40 conjugacy class representatives for $C_2\times C_{20}$ |
| Character table for $C_2\times C_{20}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $20^{2}$ | $20^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{10}$ | R | $20^{2}$ | $20^{2}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{4}$ | $20^{2}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/31.5.0.1}{5} }^{8}$ | $20^{2}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{10}$ | $20^{2}$ | $20^{2}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $11$ | 11.10.5.2 | $x^{10} + 1331 x^{4} - 14641 x^{2} + 805255$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ |
| 11.10.5.2 | $x^{10} + 1331 x^{4} - 14641 x^{2} + 805255$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 11.10.5.2 | $x^{10} + 1331 x^{4} - 14641 x^{2} + 805255$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |
| 11.10.5.2 | $x^{10} + 1331 x^{4} - 14641 x^{2} + 805255$ | $2$ | $5$ | $5$ | $C_{10}$ | $[\ ]_{2}^{5}$ | |