Normalized defining polynomial
\( x^{40} + 9 x^{38} + 77 x^{36} + 657 x^{34} + 5605 x^{32} + 47817 x^{30} + 407933 x^{28} + 3480129 x^{26} + 29689429 x^{24} + 253284345 x^{22} + 2160801389 x^{20} + 1013137380 x^{18} + 475030864 x^{16} + 222728256 x^{14} + 104430848 x^{12} + 48964608 x^{10} + 22958080 x^{8} + 10764288 x^{6} + 5046272 x^{4} + 2359296 x^{2} + 1048576 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{7}$, $\frac{1}{2} a^{19} - \frac{1}{2} a^{8}$, $\frac{1}{2} a^{20} - \frac{1}{2} a^{9}$, $\frac{1}{2} a^{21} - \frac{1}{2} a^{10}$, $\frac{1}{8643205556} a^{22} - \frac{1}{4} a^{20} - \frac{1}{4} a^{18} - \frac{1}{4} a^{16} - \frac{1}{4} a^{14} - \frac{1}{4} a^{12} + \frac{1}{4} a^{10} - \frac{1}{2} a^{9} + \frac{1}{4} a^{8} - \frac{1}{2} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a + \frac{253284345}{2160801389}$, $\frac{1}{17286411112} a^{23} + \frac{1}{8} a^{21} + \frac{1}{8} a^{19} + \frac{1}{8} a^{17} + \frac{1}{8} a^{15} + \frac{1}{8} a^{13} + \frac{1}{8} a^{11} - \frac{1}{2} a^{10} - \frac{3}{8} a^{9} + \frac{1}{8} a^{7} - \frac{1}{2} a^{6} - \frac{3}{8} a^{5} + \frac{1}{8} a^{3} - \frac{1}{2} a^{2} + \frac{253284345}{4321602778} a$, $\frac{1}{34572822224} a^{24} + \frac{1}{34572822224} a^{22} + \frac{1}{16} a^{20} - \frac{3}{16} a^{18} + \frac{1}{16} a^{16} - \frac{3}{16} a^{14} + \frac{1}{16} a^{12} - \frac{3}{16} a^{10} - \frac{1}{2} a^{9} + \frac{1}{16} a^{8} + \frac{5}{16} a^{6} - \frac{7}{16} a^{4} - \frac{1}{2} a^{3} - \frac{4068318433}{8643205556} a^{2} - \frac{1}{2} a - \frac{476879261}{2160801389}$, $\frac{1}{69145644448} a^{25} + \frac{1}{69145644448} a^{23} - \frac{7}{32} a^{21} - \frac{3}{32} a^{19} + \frac{1}{32} a^{17} + \frac{5}{32} a^{15} - \frac{7}{32} a^{13} - \frac{3}{32} a^{11} + \frac{1}{32} a^{9} - \frac{1}{2} a^{8} - \frac{11}{32} a^{7} - \frac{1}{2} a^{6} - \frac{7}{32} a^{5} - \frac{4068318433}{17286411112} a^{3} - \frac{1}{2} a^{2} - \frac{476879261}{4321602778} a$, $\frac{1}{138291288896} a^{26} + \frac{1}{138291288896} a^{24} + \frac{5}{138291288896} a^{22} + \frac{13}{64} a^{20} - \frac{15}{64} a^{18} + \frac{5}{64} a^{16} + \frac{9}{64} a^{14} - \frac{3}{64} a^{12} - \frac{31}{64} a^{10} - \frac{1}{2} a^{9} - \frac{11}{64} a^{8} + \frac{25}{64} a^{6} - \frac{4068318433}{34572822224} a^{4} - \frac{1}{2} a^{3} - \frac{476879261}{8643205556} a^{2} - \frac{1}{2} a - \frac{55898729}{2160801389}$, $\frac{1}{276582577792} a^{27} + \frac{1}{276582577792} a^{25} + \frac{5}{276582577792} a^{23} - \frac{19}{128} a^{21} - \frac{15}{128} a^{19} + \frac{5}{128} a^{17} - \frac{23}{128} a^{15} + \frac{29}{128} a^{13} - \frac{31}{128} a^{11} - \frac{1}{2} a^{10} - \frac{11}{128} a^{9} - \frac{1}{2} a^{8} + \frac{25}{128} a^{7} - \frac{4068318433}{69145644448} a^{5} - \frac{476879261}{17286411112} a^{3} - \frac{55898729}{4321602778} a$, $\frac{1}{553165155584} a^{28} + \frac{1}{553165155584} a^{26} + \frac{5}{553165155584} a^{24} - \frac{23}{553165155584} a^{22} - \frac{15}{256} a^{20} - \frac{59}{256} a^{18} + \frac{41}{256} a^{16} - \frac{35}{256} a^{14} + \frac{33}{256} a^{12} - \frac{75}{256} a^{10} - \frac{1}{2} a^{9} - \frac{39}{256} a^{8} - \frac{1}{2} a^{7} - \frac{38641140657}{138291288896} a^{6} - \frac{1}{2} a^{5} - \frac{9120084817}{34572822224} a^{4} - \frac{1108350059}{4321602778} a^{2} - \frac{259836670}{2160801389}$, $\frac{1}{1106330311168} a^{29} + \frac{1}{1106330311168} a^{27} + \frac{5}{1106330311168} a^{25} - \frac{23}{1106330311168} a^{23} + \frac{113}{512} a^{21} + \frac{69}{512} a^{19} - \frac{87}{512} a^{17} - \frac{35}{512} a^{15} + \frac{33}{512} a^{13} - \frac{75}{512} a^{11} - \frac{1}{2} a^{10} + \frac{217}{512} a^{9} - \frac{1}{2} a^{8} - \frac{38641140657}{276582577792} a^{7} + \frac{25452737407}{69145644448} a^{5} - \frac{1108350059}{8643205556} a^{3} - \frac{129918335}{2160801389} a$, $\frac{1}{4425321244672} a^{30} - \frac{1}{2212660622336} a^{29} + \frac{1}{4425321244672} a^{28} - \frac{1}{2212660622336} a^{27} + \frac{5}{4425321244672} a^{26} - \frac{5}{2212660622336} a^{25} + \frac{41}{4425321244672} a^{24} - \frac{41}{2212660622336} a^{23} - \frac{163}{4425321244672} a^{22} - \frac{177}{1024} a^{21} - \frac{123}{2048} a^{20} + \frac{123}{1024} a^{19} + \frac{233}{2048} a^{18} - \frac{233}{1024} a^{17} - \frac{483}{2048} a^{16} - \frac{29}{1024} a^{15} - \frac{159}{2048} a^{14} + \frac{159}{1024} a^{13} + \frac{501}{2048} a^{12} + \frac{11}{1024} a^{11} - \frac{999}{2048} a^{10} + \frac{487}{1024} a^{9} + \frac{272514259359}{1106330311168} a^{8} + \frac{4068318433}{553165155584} a^{7} + \frac{68668765187}{276582577792} a^{6} - \frac{68668765187}{138291288896} a^{5} - \frac{17342309841}{69145644448} a^{4} + \frac{55898729}{34572822224} a^{3} + \frac{4315050453}{17286411112} a^{2} + \frac{6552325}{8643205556} a - \frac{507336739}{4321602778}$, $\frac{1}{8850642489344} a^{31} - \frac{3}{8850642489344} a^{29} + \frac{1}{8850642489344} a^{27} + \frac{21}{8850642489344} a^{25} + \frac{185}{8850642489344} a^{23} - \frac{319}{4096} a^{21} - \frac{811}{4096} a^{19} + \frac{121}{4096} a^{17} + \frac{237}{4096} a^{15} - \frac{399}{4096} a^{13} - \frac{443}{4096} a^{11} - \frac{29044176579}{1106330311168} a^{9} - \frac{1}{2} a^{8} - \frac{68247784655}{138291288896} a^{7} - \frac{17181165979}{34572822224} a^{5} - \frac{4309266177}{8643205556} a^{3} - \frac{1}{2} a^{2} - \frac{2157909251}{4321602778} a - \frac{1}{2}$, $\frac{1}{17701284978688} a^{32} + \frac{1}{17701284978688} a^{30} - \frac{1}{2212660622336} a^{29} + \frac{5}{17701284978688} a^{28} - \frac{1}{2212660622336} a^{27} + \frac{41}{17701284978688} a^{26} - \frac{5}{2212660622336} a^{25} - \frac{163}{17701284978688} a^{24} - \frac{41}{2212660622336} a^{23} + \frac{417}{17701284978688} a^{22} + \frac{79}{1024} a^{21} - \frac{1815}{8192} a^{20} - \frac{133}{1024} a^{19} + \frac{541}{8192} a^{18} + \frac{23}{1024} a^{17} - \frac{159}{8192} a^{16} + \frac{227}{1024} a^{15} + \frac{501}{8192} a^{14} - \frac{97}{1024} a^{13} + \frac{1049}{8192} a^{12} - \frac{245}{1024} a^{11} + \frac{1932009726111}{4425321244672} a^{10} - \frac{281}{1024} a^{9} + \frac{206960054083}{1106330311168} a^{8} + \frac{142359607329}{553165155584} a^{7} + \frac{120948979055}{276582577792} a^{6} - \frac{34095942963}{138291288896} a^{5} - \frac{21614566215}{69145644448} a^{4} + \frac{8699104285}{34572822224} a^{3} - \frac{4828939517}{17286411112} a^{2} - \frac{538562266}{2160801389} a + \frac{447099803}{4321602778}$, $\frac{1}{35402569957376} a^{33} + \frac{1}{35402569957376} a^{31} - \frac{11}{35402569957376} a^{29} + \frac{25}{35402569957376} a^{27} - \frac{243}{35402569957376} a^{25} - \frac{239}{35402569957376} a^{23} - \frac{1}{17286411112} a^{22} - \frac{551}{16384} a^{21} - \frac{1}{8} a^{20} - \frac{1587}{16384} a^{19} - \frac{1}{8} a^{18} - \frac{3887}{16384} a^{17} - \frac{1}{8} a^{16} - \frac{4059}{16384} a^{15} - \frac{1}{8} a^{14} + \frac{3593}{16384} a^{13} - \frac{1}{8} a^{12} - \frac{185575635109}{8850642489344} a^{11} + \frac{3}{8} a^{10} + \frac{353052587471}{1106330311168} a^{9} + \frac{3}{8} a^{8} + \frac{7813581093}{34572822224} a^{7} + \frac{3}{8} a^{6} + \frac{6717567635}{69145644448} a^{5} + \frac{3}{8} a^{4} + \frac{241885298}{2160801389} a^{3} + \frac{3}{8} a^{2} - \frac{1933975325}{4321602778} a - \frac{253284345}{4321602778}$, $\frac{1}{70805139914752} a^{34} + \frac{1}{70805139914752} a^{32} + \frac{5}{70805139914752} a^{30} - \frac{1}{2212660622336} a^{29} + \frac{41}{70805139914752} a^{28} - \frac{1}{2212660622336} a^{27} - \frac{163}{70805139914752} a^{26} - \frac{5}{2212660622336} a^{25} + \frac{417}{70805139914752} a^{24} + \frac{23}{2212660622336} a^{23} - \frac{3787}{70805139914752} a^{22} + \frac{143}{1024} a^{21} - \frac{3555}{32768} a^{20} + \frac{187}{1024} a^{19} + \frac{8033}{32768} a^{18} + \frac{87}{1024} a^{17} + \frac{4597}{32768} a^{16} + \frac{35}{1024} a^{15} - \frac{7143}{32768} a^{14} - \frac{33}{1024} a^{13} + \frac{4144670348447}{17701284978688} a^{12} + \frac{75}{1024} a^{11} + \frac{1866455520835}{4425321244672} a^{10} + \frac{295}{1024} a^{9} - \frac{155633598737}{1106330311168} a^{8} - \frac{237941437135}{553165155584} a^{7} + \frac{12958256009}{276582577792} a^{6} + \frac{43692907041}{138291288896} a^{5} + \frac{21100677151}{69145644448} a^{4} + \frac{1108350059}{17286411112} a^{3} + \frac{4768702581}{17286411112} a^{2} + \frac{129918335}{4321602778} a - \frac{454160643}{4321602778}$, $\frac{1}{141610279829504} a^{35} + \frac{1}{141610279829504} a^{33} + \frac{5}{141610279829504} a^{31} - \frac{23}{141610279829504} a^{29} - \frac{227}{141610279829504} a^{27} + \frac{97}{141610279829504} a^{25} - \frac{1}{69145644448} a^{24} + \frac{1781}{141610279829504} a^{23} - \frac{1}{69145644448} a^{22} + \frac{9693}{65536} a^{21} + \frac{7}{32} a^{20} - \frac{8671}{65536} a^{19} + \frac{3}{32} a^{18} + \frac{14261}{65536} a^{17} - \frac{1}{32} a^{16} - \frac{807}{65536} a^{15} - \frac{5}{32} a^{14} - \frac{3634214651953}{35402569957376} a^{13} + \frac{7}{32} a^{12} + \frac{855200470783}{8850642489344} a^{11} - \frac{13}{32} a^{10} + \frac{310047049957}{1106330311168} a^{9} + \frac{15}{32} a^{8} + \frac{112231753893}{276582577792} a^{7} - \frac{5}{32} a^{6} - \frac{16213624787}{34572822224} a^{5} + \frac{7}{32} a^{4} + \frac{125749633}{8643205556} a^{3} + \frac{4068318433}{17286411112} a^{2} - \frac{2131321203}{4321602778} a + \frac{476879261}{4321602778}$, $\frac{1}{283220559659008} a^{36} + \frac{1}{283220559659008} a^{34} + \frac{5}{283220559659008} a^{32} - \frac{23}{283220559659008} a^{30} - \frac{227}{283220559659008} a^{28} + \frac{97}{283220559659008} a^{26} - \frac{1}{138291288896} a^{25} + \frac{1781}{283220559659008} a^{24} - \frac{1}{138291288896} a^{23} + \frac{15641}{283220559659008} a^{22} + \frac{7}{64} a^{21} + \frac{24097}{131072} a^{20} - \frac{13}{64} a^{19} - \frac{18507}{131072} a^{18} + \frac{15}{64} a^{17} - \frac{807}{131072} a^{16} - \frac{5}{64} a^{15} - \frac{3634214651953}{70805139914752} a^{14} - \frac{9}{64} a^{13} + \frac{855200470783}{17701284978688} a^{12} + \frac{3}{64} a^{11} - \frac{796283261211}{2212660622336} a^{10} - \frac{1}{64} a^{9} - \frac{26059535003}{553165155584} a^{8} + \frac{11}{64} a^{7} - \frac{33500035899}{69145644448} a^{6} - \frac{25}{64} a^{5} - \frac{8517455923}{17286411112} a^{4} + \frac{4068318433}{34572822224} a^{3} + \frac{14740093}{4321602778} a^{2} + \frac{476879261}{8643205556} a + \frac{3455602}{2160801389}$, $\frac{1}{566441119318016} a^{37} + \frac{1}{566441119318016} a^{35} + \frac{5}{566441119318016} a^{33} - \frac{23}{566441119318016} a^{31} - \frac{227}{566441119318016} a^{29} + \frac{97}{566441119318016} a^{27} - \frac{1}{276582577792} a^{26} + \frac{1781}{566441119318016} a^{25} - \frac{1}{276582577792} a^{24} + \frac{15641}{566441119318016} a^{23} - \frac{5}{276582577792} a^{22} + \frac{24097}{262144} a^{21} + \frac{19}{128} a^{20} + \frac{47029}{262144} a^{19} + \frac{15}{128} a^{18} + \frac{64729}{262144} a^{17} - \frac{5}{128} a^{16} + \frac{31768355305423}{141610279829504} a^{15} + \frac{23}{128} a^{14} - \frac{7995442018561}{35402569957376} a^{13} - \frac{29}{128} a^{12} + \frac{310047049957}{4425321244672} a^{11} - \frac{33}{128} a^{10} + \frac{527105620581}{1106330311168} a^{9} - \frac{53}{128} a^{8} + \frac{1072786325}{138291288896} a^{7} + \frac{39}{128} a^{6} - \frac{17160661479}{34572822224} a^{5} + \frac{4068318433}{69145644448} a^{4} - \frac{4306862685}{8643205556} a^{3} - \frac{8166326295}{17286411112} a^{2} - \frac{2157345787}{4321602778} a - \frac{1052451330}{2160801389}$, $\frac{1}{1132882238636032} a^{38} + \frac{1}{1132882238636032} a^{36} + \frac{5}{1132882238636032} a^{34} - \frac{23}{1132882238636032} a^{32} + \frac{29}{1132882238636032} a^{30} - \frac{1}{2212660622336} a^{29} + \frac{353}{1132882238636032} a^{28} + \frac{3}{2212660622336} a^{27} + \frac{3061}{1132882238636032} a^{26} - \frac{1}{2212660622336} a^{25} - \frac{6631}{1132882238636032} a^{24} - \frac{21}{2212660622336} a^{23} + \frac{59149}{1132882238636032} a^{22} - \frac{253}{1024} a^{21} - \frac{17227}{524288} a^{20} + \frac{63}{1024} a^{19} - \frac{39463}{524288} a^{18} + \frac{43}{1024} a^{17} + \frac{18077517704719}{283220559659008} a^{16} + \frac{135}{1024} a^{15} - \frac{216557018161}{70805139914752} a^{14} + \frac{19}{1024} a^{13} + \frac{1922004886151}{8850642489344} a^{12} + \frac{143}{1024} a^{11} - \frac{274681613073}{4425321244672} a^{10} + \frac{187}{1024} a^{9} - \frac{345505395373}{1106330311168} a^{8} + \frac{98189821027}{276582577792} a^{7} - \frac{17260291841}{276582577792} a^{6} + \frac{7745345763}{34572822224} a^{5} - \frac{21604952247}{69145644448} a^{4} + \frac{513889064}{2160801389} a^{3} - \frac{4827812589}{17286411112} a^{2} - \frac{2210147793}{8643205556} a + \frac{447231899}{4321602778}$, $\frac{1}{2265764477272064} a^{39} + \frac{1}{2265764477272064} a^{37} + \frac{5}{2265764477272064} a^{35} - \frac{23}{2265764477272064} a^{33} + \frac{29}{2265764477272064} a^{31} - \frac{671}{2265764477272064} a^{29} - \frac{1}{1106330311168} a^{28} + \frac{2037}{2265764477272064} a^{27} - \frac{1}{1106330311168} a^{26} - \frac{11751}{2265764477272064} a^{25} - \frac{5}{1106330311168} a^{24} + \frac{17165}{2265764477272064} a^{23} + \frac{23}{1106330311168} a^{22} - \frac{198475}{1048576} a^{21} - \frac{113}{512} a^{20} - \frac{175655}{1048576} a^{19} - \frac{69}{512} a^{18} + \frac{30800316283151}{566441119318016} a^{17} + \frac{87}{512} a^{16} + \frac{31175565561231}{141610279829504} a^{15} + \frac{35}{512} a^{14} - \frac{4180098236385}{17701284978688} a^{13} - \frac{33}{512} a^{12} - \frac{179606351957}{8850642489344} a^{11} - \frac{181}{512} a^{10} - \frac{199762715049}{1106330311168} a^{9} - \frac{217}{512} a^{8} + \frac{3909353609}{17286411112} a^{7} - \frac{99650148239}{276582577792} a^{6} + \frac{6722374619}{69145644448} a^{5} - \frac{25452737407}{69145644448} a^{4} - \frac{1676889927}{4321602778} a^{3} + \frac{1108350059}{8643205556} a^{2} - \frac{1933909277}{4321602778} a - \frac{1900964719}{4321602778}$
Class group and class number
Not computed
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1}{8643205556} a^{24} - \frac{18434075121}{8643205556} a^{2} \) (order $22$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_{10}$ (as 40T7):
| An abelian group of order 40 |
| The 40 conjugacy class representatives for $C_2^2\times C_{10}$ |
| Character table for $C_2^2\times C_{10}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/3.10.0.1}{10} }^{4}$ | R | ${\href{/LocalNumberField/7.10.0.1}{10} }^{4}$ | R | R | ${\href{/LocalNumberField/17.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{20}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{20}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 11 | Data not computed | ||||||
| 13 | Data not computed | ||||||