Normalized defining polynomial
\( x^{40} + 385 x^{32} + 38720 x^{24} + 842523 x^{16} + 1449459 x^{8} + 14641 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{11} a^{10}$, $\frac{1}{11} a^{11}$, $\frac{1}{11} a^{12}$, $\frac{1}{11} a^{13}$, $\frac{1}{11} a^{14}$, $\frac{1}{11} a^{15}$, $\frac{1}{11} a^{16}$, $\frac{1}{11} a^{17}$, $\frac{1}{11} a^{18}$, $\frac{1}{11} a^{19}$, $\frac{1}{121} a^{20}$, $\frac{1}{121} a^{21}$, $\frac{1}{121} a^{22}$, $\frac{1}{121} a^{23}$, $\frac{1}{121} a^{24}$, $\frac{1}{121} a^{25}$, $\frac{1}{121} a^{26}$, $\frac{1}{121} a^{27}$, $\frac{1}{121} a^{28}$, $\frac{1}{121} a^{29}$, $\frac{1}{1331} a^{30}$, $\frac{1}{1331} a^{31}$, $\frac{1}{13990456741151} a^{32} - \frac{1889100866}{1271859703741} a^{24} + \frac{2932669862}{115623609431} a^{16} + \frac{3561712835}{10511237221} a^{8} - \frac{4799947149}{10511237221}$, $\frac{1}{13990456741151} a^{33} - \frac{1889100866}{1271859703741} a^{25} + \frac{2932669862}{115623609431} a^{17} + \frac{3561712835}{10511237221} a^{9} - \frac{4799947149}{10511237221} a$, $\frac{1}{13990456741151} a^{34} - \frac{1889100866}{1271859703741} a^{26} + \frac{2932669862}{115623609431} a^{18} - \frac{2866107699}{115623609431} a^{10} - \frac{4799947149}{10511237221} a^{2}$, $\frac{1}{13990456741151} a^{35} - \frac{1889100866}{1271859703741} a^{27} + \frac{2932669862}{115623609431} a^{19} - \frac{2866107699}{115623609431} a^{11} - \frac{4799947149}{10511237221} a^{3}$, $\frac{1}{13990456741151} a^{36} - \frac{1889100866}{1271859703741} a^{28} + \frac{725656819}{1271859703741} a^{20} - \frac{2866107699}{115623609431} a^{12} - \frac{4799947149}{10511237221} a^{4}$, $\frac{1}{13990456741151} a^{37} - \frac{1889100866}{1271859703741} a^{29} + \frac{725656819}{1271859703741} a^{21} - \frac{2866107699}{115623609431} a^{13} - \frac{4799947149}{10511237221} a^{5}$, $\frac{1}{13990456741151} a^{38} + \frac{242364916}{13990456741151} a^{30} + \frac{725656819}{1271859703741} a^{22} - \frac{2866107699}{115623609431} a^{14} - \frac{4799947149}{10511237221} a^{6}$, $\frac{1}{13990456741151} a^{39} + \frac{242364916}{13990456741151} a^{31} + \frac{725656819}{1271859703741} a^{23} - \frac{2866107699}{115623609431} a^{15} - \frac{4799947149}{10511237221} a^{7}$
Class group and class number
Not computed
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{22017846}{13990456741151} a^{34} - \frac{771266696}{1271859703741} a^{26} - \frac{7068655981}{115623609431} a^{18} - \frac{155782250865}{115623609431} a^{10} - \frac{33250829639}{10511237221} a^{2} \) (order $8$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Not computed | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | Not computed | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_{20}$ (as 40T2):
| An abelian group of order 40 |
| The 40 conjugacy class representatives for $C_2\times C_{20}$ |
| Character table for $C_2\times C_{20}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $20^{2}$ | $20^{2}$ | ${\href{/LocalNumberField/7.10.0.1}{10} }^{4}$ | R | $20^{2}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{4}$ | $20^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{20}$ | $20^{2}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{4}$ | $20^{2}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{10}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{4}$ | $20^{2}$ | $20^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 11 | Data not computed | ||||||