Properties

Label 40.0.41090000389...9936.2
Degree $40$
Signature $[0, 20]$
Discriminant $2^{120}\cdot 11^{36}$
Root discriminant $69.24$
Ramified primes $2, 11$
Class number Not computed
Class group Not computed
Galois group $C_2\times C_{20}$ (as 40T2)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![14641, 0, 0, 0, 0, 0, 0, 0, 1449459, 0, 0, 0, 0, 0, 0, 0, 842523, 0, 0, 0, 0, 0, 0, 0, 38720, 0, 0, 0, 0, 0, 0, 0, 385, 0, 0, 0, 0, 0, 0, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^40 + 385*x^32 + 38720*x^24 + 842523*x^16 + 1449459*x^8 + 14641)
 
gp: K = bnfinit(x^40 + 385*x^32 + 38720*x^24 + 842523*x^16 + 1449459*x^8 + 14641, 1)
 

Normalized defining polynomial

\( x^{40} + 385 x^{32} + 38720 x^{24} + 842523 x^{16} + 1449459 x^{8} + 14641 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $40$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 20]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(41090000389047069406072163992081637611400284636821909168682596532209319936=2^{120}\cdot 11^{36}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $69.24$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(176=2^{4}\cdot 11\)
Dirichlet character group:    $\lbrace$$\chi_{176}(1,·)$, $\chi_{176}(131,·)$, $\chi_{176}(135,·)$, $\chi_{176}(9,·)$, $\chi_{176}(139,·)$, $\chi_{176}(13,·)$, $\chi_{176}(15,·)$, $\chi_{176}(19,·)$, $\chi_{176}(21,·)$, $\chi_{176}(23,·)$, $\chi_{176}(25,·)$, $\chi_{176}(29,·)$, $\chi_{176}(159,·)$, $\chi_{176}(35,·)$, $\chi_{176}(169,·)$, $\chi_{176}(43,·)$, $\chi_{176}(173,·)$, $\chi_{176}(47,·)$, $\chi_{176}(49,·)$, $\chi_{176}(51,·)$, $\chi_{176}(137,·)$, $\chi_{176}(31,·)$, $\chi_{176}(61,·)$, $\chi_{176}(71,·)$, $\chi_{176}(81,·)$, $\chi_{176}(83,·)$, $\chi_{176}(85,·)$, $\chi_{176}(89,·)$, $\chi_{176}(97,·)$, $\chi_{176}(101,·)$, $\chi_{176}(103,·)$, $\chi_{176}(171,·)$, $\chi_{176}(107,·)$, $\chi_{176}(109,·)$, $\chi_{176}(111,·)$, $\chi_{176}(113,·)$, $\chi_{176}(117,·)$, $\chi_{176}(119,·)$, $\chi_{176}(123,·)$, $\chi_{176}(149,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{11} a^{10}$, $\frac{1}{11} a^{11}$, $\frac{1}{11} a^{12}$, $\frac{1}{11} a^{13}$, $\frac{1}{11} a^{14}$, $\frac{1}{11} a^{15}$, $\frac{1}{11} a^{16}$, $\frac{1}{11} a^{17}$, $\frac{1}{11} a^{18}$, $\frac{1}{11} a^{19}$, $\frac{1}{121} a^{20}$, $\frac{1}{121} a^{21}$, $\frac{1}{121} a^{22}$, $\frac{1}{121} a^{23}$, $\frac{1}{121} a^{24}$, $\frac{1}{121} a^{25}$, $\frac{1}{121} a^{26}$, $\frac{1}{121} a^{27}$, $\frac{1}{121} a^{28}$, $\frac{1}{121} a^{29}$, $\frac{1}{1331} a^{30}$, $\frac{1}{1331} a^{31}$, $\frac{1}{13990456741151} a^{32} - \frac{1889100866}{1271859703741} a^{24} + \frac{2932669862}{115623609431} a^{16} + \frac{3561712835}{10511237221} a^{8} - \frac{4799947149}{10511237221}$, $\frac{1}{13990456741151} a^{33} - \frac{1889100866}{1271859703741} a^{25} + \frac{2932669862}{115623609431} a^{17} + \frac{3561712835}{10511237221} a^{9} - \frac{4799947149}{10511237221} a$, $\frac{1}{13990456741151} a^{34} - \frac{1889100866}{1271859703741} a^{26} + \frac{2932669862}{115623609431} a^{18} - \frac{2866107699}{115623609431} a^{10} - \frac{4799947149}{10511237221} a^{2}$, $\frac{1}{13990456741151} a^{35} - \frac{1889100866}{1271859703741} a^{27} + \frac{2932669862}{115623609431} a^{19} - \frac{2866107699}{115623609431} a^{11} - \frac{4799947149}{10511237221} a^{3}$, $\frac{1}{13990456741151} a^{36} - \frac{1889100866}{1271859703741} a^{28} + \frac{725656819}{1271859703741} a^{20} - \frac{2866107699}{115623609431} a^{12} - \frac{4799947149}{10511237221} a^{4}$, $\frac{1}{13990456741151} a^{37} - \frac{1889100866}{1271859703741} a^{29} + \frac{725656819}{1271859703741} a^{21} - \frac{2866107699}{115623609431} a^{13} - \frac{4799947149}{10511237221} a^{5}$, $\frac{1}{13990456741151} a^{38} + \frac{242364916}{13990456741151} a^{30} + \frac{725656819}{1271859703741} a^{22} - \frac{2866107699}{115623609431} a^{14} - \frac{4799947149}{10511237221} a^{6}$, $\frac{1}{13990456741151} a^{39} + \frac{242364916}{13990456741151} a^{31} + \frac{725656819}{1271859703741} a^{23} - \frac{2866107699}{115623609431} a^{15} - \frac{4799947149}{10511237221} a^{7}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Not computed

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $19$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{22017846}{13990456741151} a^{34} - \frac{771266696}{1271859703741} a^{26} - \frac{7068655981}{115623609431} a^{18} - \frac{155782250865}{115623609431} a^{10} - \frac{33250829639}{10511237221} a^{2} \) (order $8$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Not computed
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  Not computed
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_{20}$ (as 40T2):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 40
The 40 conjugacy class representatives for $C_2\times C_{20}$
Character table for $C_2\times C_{20}$ is not computed

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-2}) \), \(\Q(\zeta_{8})\), 4.4.247808.1, 4.0.247808.2, \(\Q(\zeta_{11})^+\), 8.0.245635219456.2, 10.0.219503494144.1, 10.10.7024111812608.1, 10.0.7024111812608.1, 20.0.50522262278163705147147943936.1, 20.20.200317132330035063121671003054276608.1, 20.0.200317132330035063121671003054276608.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $20^{2}$ $20^{2}$ ${\href{/LocalNumberField/7.10.0.1}{10} }^{4}$ R $20^{2}$ ${\href{/LocalNumberField/17.10.0.1}{10} }^{4}$ $20^{2}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{20}$ $20^{2}$ ${\href{/LocalNumberField/31.10.0.1}{10} }^{4}$ $20^{2}$ ${\href{/LocalNumberField/41.5.0.1}{5} }^{8}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{10}$ ${\href{/LocalNumberField/47.10.0.1}{10} }^{4}$ $20^{2}$ $20^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
11Data not computed