Properties

Label 40.0.41090000389...9936.1
Degree $40$
Signature $[0, 20]$
Discriminant $2^{120}\cdot 11^{36}$
Root discriminant $69.24$
Ramified primes $2, 11$
Class number $1068050$ (GRH)
Class group $[1068050]$ (GRH)
Galois group $C_2\times C_{20}$ (as 40T2)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, 0, 240, 0, 9260, 0, 137208, 0, 1042879, 0, 4719648, 0, 13942072, 0, 28593712, 0, 42484835, 0, 47106624, 0, 39776912, 0, 25917344, 0, 13124476, 0, 5174208, 0, 1581776, 0, 370976, 0, 65449, 0, 8400, 0, 740, 0, 40, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^40 + 40*x^38 + 740*x^36 + 8400*x^34 + 65449*x^32 + 370976*x^30 + 1581776*x^28 + 5174208*x^26 + 13124476*x^24 + 25917344*x^22 + 39776912*x^20 + 47106624*x^18 + 42484835*x^16 + 28593712*x^14 + 13942072*x^12 + 4719648*x^10 + 1042879*x^8 + 137208*x^6 + 9260*x^4 + 240*x^2 + 1)
 
gp: K = bnfinit(x^40 + 40*x^38 + 740*x^36 + 8400*x^34 + 65449*x^32 + 370976*x^30 + 1581776*x^28 + 5174208*x^26 + 13124476*x^24 + 25917344*x^22 + 39776912*x^20 + 47106624*x^18 + 42484835*x^16 + 28593712*x^14 + 13942072*x^12 + 4719648*x^10 + 1042879*x^8 + 137208*x^6 + 9260*x^4 + 240*x^2 + 1, 1)
 

Normalized defining polynomial

\( x^{40} + 40 x^{38} + 740 x^{36} + 8400 x^{34} + 65449 x^{32} + 370976 x^{30} + 1581776 x^{28} + 5174208 x^{26} + 13124476 x^{24} + 25917344 x^{22} + 39776912 x^{20} + 47106624 x^{18} + 42484835 x^{16} + 28593712 x^{14} + 13942072 x^{12} + 4719648 x^{10} + 1042879 x^{8} + 137208 x^{6} + 9260 x^{4} + 240 x^{2} + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $40$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 20]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(41090000389047069406072163992081637611400284636821909168682596532209319936=2^{120}\cdot 11^{36}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $69.24$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(176=2^{4}\cdot 11\)
Dirichlet character group:    $\lbrace$$\chi_{176}(1,·)$, $\chi_{176}(3,·)$, $\chi_{176}(7,·)$, $\chi_{176}(9,·)$, $\chi_{176}(13,·)$, $\chi_{176}(147,·)$, $\chi_{176}(149,·)$, $\chi_{176}(151,·)$, $\chi_{176}(25,·)$, $\chi_{176}(155,·)$, $\chi_{176}(29,·)$, $\chi_{176}(27,·)$, $\chi_{176}(39,·)$, $\chi_{176}(169,·)$, $\chi_{176}(173,·)$, $\chi_{176}(175,·)$, $\chi_{176}(49,·)$, $\chi_{176}(137,·)$, $\chi_{176}(59,·)$, $\chi_{176}(61,·)$, $\chi_{176}(63,·)$, $\chi_{176}(67,·)$, $\chi_{176}(75,·)$, $\chi_{176}(79,·)$, $\chi_{176}(81,·)$, $\chi_{176}(163,·)$, $\chi_{176}(85,·)$, $\chi_{176}(87,·)$, $\chi_{176}(89,·)$, $\chi_{176}(91,·)$, $\chi_{176}(95,·)$, $\chi_{176}(97,·)$, $\chi_{176}(101,·)$, $\chi_{176}(167,·)$, $\chi_{176}(109,·)$, $\chi_{176}(113,·)$, $\chi_{176}(115,·)$, $\chi_{176}(117,·)$, $\chi_{176}(127,·)$, $\chi_{176}(21,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $a^{24}$, $a^{25}$, $a^{26}$, $a^{27}$, $a^{28}$, $a^{29}$, $a^{30}$, $a^{31}$, $a^{32}$, $a^{33}$, $a^{34}$, $a^{35}$, $a^{36}$, $a^{37}$, $a^{38}$, $a^{39}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{1068050}$, which has order $1068050$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $19$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 172972974175441.34 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\times C_{20}$ (as 40T2):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 40
The 40 conjugacy class representatives for $C_2\times C_{20}$
Character table for $C_2\times C_{20}$ is not computed

Intermediate fields

\(\Q(\sqrt{22}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{11}) \), \(\Q(\sqrt{2}, \sqrt{11})\), 4.0.2048.2, 4.0.247808.2, \(\Q(\zeta_{11})^+\), 8.0.245635219456.1, 10.10.77265229938688.1, 10.10.7024111812608.1, \(\Q(\zeta_{44})^+\), \(\Q(\zeta_{88})^+\), 20.0.1655513490330868290261743826894848.1, 20.0.200317132330035063121671003054276608.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R $20^{2}$ $20^{2}$ ${\href{/LocalNumberField/7.5.0.1}{5} }^{8}$ R $20^{2}$ ${\href{/LocalNumberField/17.10.0.1}{10} }^{4}$ $20^{2}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{20}$ $20^{2}$ ${\href{/LocalNumberField/31.10.0.1}{10} }^{4}$ $20^{2}$ ${\href{/LocalNumberField/41.10.0.1}{10} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{10}$ ${\href{/LocalNumberField/47.10.0.1}{10} }^{4}$ $20^{2}$ $20^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
11Data not computed