Normalized defining polynomial
\( x^{40} + 60 x^{36} + 1450 x^{32} + 18060 x^{28} + 123375 x^{24} + 457507 x^{20} + 869360 x^{16} + 747925 x^{12} + 218435 x^{8} + 4075 x^{4} + 1 \)
Invariants
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $a^{20}$, $a^{21}$, $a^{22}$, $a^{23}$, $\frac{1}{7} a^{24} + \frac{2}{7} a^{20} + \frac{3}{7} a^{16} - \frac{2}{7} a^{12} - \frac{3}{7} a^{8} + \frac{2}{7} a^{4} - \frac{3}{7}$, $\frac{1}{7} a^{25} + \frac{2}{7} a^{21} + \frac{3}{7} a^{17} - \frac{2}{7} a^{13} - \frac{3}{7} a^{9} + \frac{2}{7} a^{5} - \frac{3}{7} a$, $\frac{1}{7} a^{26} + \frac{2}{7} a^{22} + \frac{3}{7} a^{18} - \frac{2}{7} a^{14} - \frac{3}{7} a^{10} + \frac{2}{7} a^{6} - \frac{3}{7} a^{2}$, $\frac{1}{7} a^{27} + \frac{2}{7} a^{23} + \frac{3}{7} a^{19} - \frac{2}{7} a^{15} - \frac{3}{7} a^{11} + \frac{2}{7} a^{7} - \frac{3}{7} a^{3}$, $\frac{1}{7} a^{28} - \frac{1}{7} a^{20} - \frac{1}{7} a^{16} + \frac{1}{7} a^{12} + \frac{1}{7} a^{8} - \frac{1}{7}$, $\frac{1}{7} a^{29} - \frac{1}{7} a^{21} - \frac{1}{7} a^{17} + \frac{1}{7} a^{13} + \frac{1}{7} a^{9} - \frac{1}{7} a$, $\frac{1}{7} a^{30} - \frac{1}{7} a^{22} - \frac{1}{7} a^{18} + \frac{1}{7} a^{14} + \frac{1}{7} a^{10} - \frac{1}{7} a^{2}$, $\frac{1}{7} a^{31} - \frac{1}{7} a^{23} - \frac{1}{7} a^{19} + \frac{1}{7} a^{15} + \frac{1}{7} a^{11} - \frac{1}{7} a^{3}$, $\frac{1}{7} a^{32} + \frac{1}{7} a^{20} - \frac{3}{7} a^{16} - \frac{1}{7} a^{12} - \frac{3}{7} a^{8} + \frac{1}{7} a^{4} - \frac{3}{7}$, $\frac{1}{7} a^{33} + \frac{1}{7} a^{21} - \frac{3}{7} a^{17} - \frac{1}{7} a^{13} - \frac{3}{7} a^{9} + \frac{1}{7} a^{5} - \frac{3}{7} a$, $\frac{1}{7} a^{34} + \frac{1}{7} a^{22} - \frac{3}{7} a^{18} - \frac{1}{7} a^{14} - \frac{3}{7} a^{10} + \frac{1}{7} a^{6} - \frac{3}{7} a^{2}$, $\frac{1}{7} a^{35} + \frac{1}{7} a^{23} - \frac{3}{7} a^{19} - \frac{1}{7} a^{15} - \frac{3}{7} a^{11} + \frac{1}{7} a^{7} - \frac{3}{7} a^{3}$, $\frac{1}{1173710522064219751801} a^{36} + \frac{5642206041008244573}{1173710522064219751801} a^{32} + \frac{55912877880291488300}{1173710522064219751801} a^{28} + \frac{24599963300249736804}{1173710522064219751801} a^{24} + \frac{349363673510104545123}{1173710522064219751801} a^{20} + \frac{30902009758157571149}{167672931723459964543} a^{16} + \frac{434536944347572511419}{1173710522064219751801} a^{12} + \frac{398952156474441534977}{1173710522064219751801} a^{8} + \frac{552337392491490080844}{1173710522064219751801} a^{4} + \frac{357398360527437043737}{1173710522064219751801}$, $\frac{1}{1173710522064219751801} a^{37} + \frac{5642206041008244573}{1173710522064219751801} a^{33} + \frac{55912877880291488300}{1173710522064219751801} a^{29} + \frac{24599963300249736804}{1173710522064219751801} a^{25} + \frac{349363673510104545123}{1173710522064219751801} a^{21} + \frac{30902009758157571149}{167672931723459964543} a^{17} + \frac{434536944347572511419}{1173710522064219751801} a^{13} + \frac{398952156474441534977}{1173710522064219751801} a^{9} + \frac{552337392491490080844}{1173710522064219751801} a^{5} + \frac{357398360527437043737}{1173710522064219751801} a$, $\frac{1}{1173710522064219751801} a^{38} + \frac{5642206041008244573}{1173710522064219751801} a^{34} + \frac{55912877880291488300}{1173710522064219751801} a^{30} + \frac{24599963300249736804}{1173710522064219751801} a^{26} + \frac{349363673510104545123}{1173710522064219751801} a^{22} + \frac{30902009758157571149}{167672931723459964543} a^{18} + \frac{434536944347572511419}{1173710522064219751801} a^{14} + \frac{398952156474441534977}{1173710522064219751801} a^{10} + \frac{552337392491490080844}{1173710522064219751801} a^{6} + \frac{357398360527437043737}{1173710522064219751801} a^{2}$, $\frac{1}{1173710522064219751801} a^{39} + \frac{5642206041008244573}{1173710522064219751801} a^{35} + \frac{55912877880291488300}{1173710522064219751801} a^{31} + \frac{24599963300249736804}{1173710522064219751801} a^{27} + \frac{349363673510104545123}{1173710522064219751801} a^{23} + \frac{30902009758157571149}{167672931723459964543} a^{19} + \frac{434536944347572511419}{1173710522064219751801} a^{15} + \frac{398952156474441534977}{1173710522064219751801} a^{11} + \frac{552337392491490080844}{1173710522064219751801} a^{7} + \frac{357398360527437043737}{1173710522064219751801} a^{3}$
Class group and class number
$C_{11}\times C_{2255}$, which has order $24805$ (assuming GRH)
Unit group
| Rank: | $19$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{155380917881805618250}{1173710522064219751801} a^{39} - \frac{9322745074008328324216}{1173710522064219751801} a^{35} - \frac{225295688002714930840740}{1173710522064219751801} a^{31} - \frac{2806017343545754208553400}{1173710522064219751801} a^{27} - \frac{19168074731518164940493765}{1173710522064219751801} a^{23} - \frac{10153369144579111620294350}{167672931723459964543} a^{19} - \frac{135027253103346561052117154}{1173710522064219751801} a^{15} - \frac{116103928625932626925593090}{1173710522064219751801} a^{11} - \frac{33839405690677968704638925}{1173710522064219751801} a^{7} - \frac{601046104243551107175290}{1173710522064219751801} a^{3} \) (order $8$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3995169264157994.0 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_{10}$ (as 40T7):
| An abelian group of order 40 |
| The 40 conjugacy class representatives for $C_2^2\times C_{10}$ |
| Character table for $C_2^2\times C_{10}$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.10.0.1}{10} }^{4}$ | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{20}$ | ${\href{/LocalNumberField/11.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/17.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/19.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/23.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/29.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/31.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/37.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{8}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{20}$ | ${\href{/LocalNumberField/47.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/53.10.0.1}{10} }^{4}$ | ${\href{/LocalNumberField/59.10.0.1}{10} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||